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Disclaimer

These notes are intended to facilitate my personal understanding and clarification, based primarily

on my readings of the papers: NLTS Hamiltonians from good quantum codes and Explicit Lower

Bounds Against Ω(n)-Rounds of Sum-of-Squares.

Much of these notes have been generated through my interactions with ChatGPT-4, an AI

language model, which assisted me in quickly parsing the dense content of the papers.

The following video talks/lectures were referenced during the preparation of these notes. Often

screenshots have been directly included where relevant.

1. Anthony Leverrier’s introduction to quantum LDPC codes from left-right Cayley complexes

at Technion.

2. Chinmay Nirkhe’s presentations on the NLTS theorem at QIP 2023 and at Simons Institute.

3. Max Hopkins’ discussion on high-dimensional expanders and hardness of approximation at

IISc Bangalore.

https://arxiv.org/abs/2206.13228
https://arxiv.org/abs/2204.11469
https://arxiv.org/abs/2204.11469
https://www.youtube.com/watch?v=GGlfiB96uJ8
https://www.youtube.com/watch?v=rO6oXJNRNW8
https://www.youtube.com/watch?v=g8erlxAbsLA
https://www.youtube.com/watch?v=SgL7wLV6yNc


5 1. The NLTS Theorem / Conjecture

1 The NLTS Theorem / Conjecture

1.1 The NLTS and quantum PCP

According to the No Low-Energy Trivial State (NLTS) conjecture, originally put forth by Freedman

and Hastings, there exist families of Hamiltonians (which describe the total energy of quantum

systems) such that all their low-energy states have non-trivial complexity. This complexity is

measured by the quantum circuit depth needed to prepare the state.

[ABN] proves this conjecture by showing that certain families of quantum low-density parity-

check (LDPC) codes correspond to NLTS local Hamiltonians. This means that these quantum

codes map to Hamiltonians that satisfy the conditions laid out in the NLTS conjecture.

The introduction also relates the NLTS conjecture to the quantum PCP conjecture, one of the

most important open questions in quantum complexity theory. This conjecture asserts that local

Hamiltonians with a constant fraction promise gap remain QMA-complete, which is the quantum

analog of NP-complete problems.

The paper suggests that proving the NLTS conjecture could shed light on the validity of the

quantum PCP conjecture. However, proving the NLTS conjecture itself has been challenging in the

most general case.

1.2 NLTS from quantum LDPC codes

[ABN] introduces the main result, that there indeed exist such NLTS local Hamiltonians. The

Hamiltonians in question are associated with quantum LDPC error-correcting codes that have an

additional property related to the clustering of approximate codewords of the underlying classical

codes.

Finally, the introduction lists a series of open questions. These are related to whether the property

of clustering approximate codewords holds for all constant-rate and linear-distance quantum codes,

the relationship between this property and the small-set boundary and co-boundary expansion, and

whether the proof techniques can be generalized for non-commuting Hamiltonians.

In simple terms, it has shown that the NLTS conjecture is true. This conjecture states that for

certain families of quantum systems (described by Hamiltonians), the lower-energy states have high

complexity, meaning they need complex quantum circuits to be prepared.

The breakthrough was proving this conjecture by connecting it to quantum error-correcting

codes. More specifically, they found that families of quantum low-density parity-check (QLDPC)

codes that have constant rates and linear distances correspond to these Hamiltonians.

Quantum low-density parity-check (QLDPC) codes are a type of quantum error-correcting code,

which help protect quantum information from errors due to decoherence and other quantum noise.

The fact that these codes correspond to the Hamiltonians of the NLTS conjecture is a significant

result, as it potentially provides a new way of studying and understanding these complex quantum

systems.

It may also have implications for quantum computing, as understanding the complexity of low

energy states could be important for quantum algorithm design and error correction. Their work

could thus represent a substantial contribution to the field of quantum information and computation.

1.3 QMA-complete local Hamiltonian problem and quantum PCP

The QMA-complete local Hamiltonian problem is presented as a quantum analogue of the NP-

complete constraint satisfaction problem (CSP). In simpler terms, the challenge of finding the

https://arxiv.org/abs/2206.13228
https://arxiv.org/abs/2206.13228
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lowest energy state of a quantum system (the local Hamiltonian problem) mirrors the difficulty of

solving certain classical problems (the constraint satisfaction problem).

The quantum PCP (Probabilistically Checkable Proofs) conjecture is also highlighted as one of

the most important open questions in quantum complexity theory. It essentially posits that certain

problems remain “hard” (QMA-complete) even when a bit of approximation or “promise gap” is

allowed. This is analogous to the classical PCP theorem which established that certain problems

remained NP-complete even when approximations were permitted.

1.4 The relation between NLTS and quantum PCP

The NLTS conjecture proposes that for a given family of local Hamiltonians (which describe systems

of n qubits), any low-energy state (with energy less than a certain fixed fraction of the total number

of qubits, ϵn) cannot be prepared by a simple (constant depth) quantum circuit. This essentially

means that these low-energy states are complex and not easily producible, hence the name “No

Low-Energy Trivial States”.

This conjecture is seen as a direct consequence of the quantum PCP conjecture. This is because if

the NLTS conjecture were false, it would imply that there is a simple quantum solution to a problem

that is expected to be QMA-complete, essentially contradicting the quantum PCP conjecture. The

NLTS conjecture can thus be viewed as addressing the issue of how much quantum states of local

Hamiltonians can be approximated using classical resources.

1.5 Wait, what is the quantum PCP conjecture?

The classical PCP theorem, a cornerstone of theoretical computer science, says that for every

decision problem solved by a nondeterministic Turing machine, there is a “proof” that can be

checked probabilistically by examining a constant number of random positions.

The Quantum PCP Conjecture states that the problem of approximating the ground state energy

of a local Hamiltonian is QMA-complete. Here, a local Hamiltonian is a simple model for the energy

of a quantum system, where the Hamiltonian (energy operator) is a sum of terms, each of which

involves only a constant number of particles.

QMA (Quantum Merlin-Arthur) is the class of problems for which a “yes” answer can be proven

to a quantum verifier by a quantum proof, whereas if the answer is “no” then no quantum proof

can convince the verifier otherwise with high probability. QMA-completeness is an indicator that

the problem is one of the hardest problems in the QMA complexity class, in the sense that any

problem in QMA can be efficiently reduced to it.

Despite evidence both supporting and contradicting the quantum PCP conjecture, its validity

remains undetermined, signifying a major open problem in quantum information theory. [ABN]

contributes to this ongoing dialogue in the quantum computing and complexity theory community.

1.6 The Key Theorem

Theorem 1 (No low-energy trivial states) [ABN]

There exists a fixed constant ϵ > 0 and an explicit family of O(1)-local frustration-free commuting

Hamiltonians
{
H(n)

}∞

n=1
where H(n) =

∑m
i=1 h

(n)
i acts on n particles and consists of m = Θ(n)

local terms such that for any family of states {ψn} satisfying tr
(
H(n)ψ

)
< ϵn, the circuit complexity

of the state ψn is at least Ω(log n).

https://arxiv.org/abs/2206.13228
https://arxiv.org/abs/2206.13228
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This theorem provides a significant advancement in understanding the complexity properties of

low-energy states in quantum many-body systems. It is essentially saying that there is a specific

family of Hamiltonians (i.e., quantum mechanical operators representing the energy of the system),

which are local and frustration-free, such that any low-energy state of these Hamiltonians requires

a quantum circuit of a nontrivial size (measured by the circuit depth) to be generated.

Let’s break down some key terms:

- Local Hamiltonian: These are physical systems where each particle (or qubit in the case of a

quantum computer) interacts only with its nearby neighbors. Mathematically, these Hamiltonians

are sums of terms, each of which acts nontrivially only on a small number of particles. The “O(1)-

local” here means that the number of particles that each term acts on is a constant (does not grow

with the system size).

- Frustration-free: A system is said to be frustration-free if there is a global ground state (a

state of minimal energy) where each local term in the Hamiltonian is minimized. In other words,

all local interactions can be simultaneously satisfied.

- Commuting Hamiltonian: This means that all the local terms in the Hamiltonian commute

with each other, i.e., the order in which they are applied does not matter. This is a special class of

Hamiltonians, as not all quantum systems have this property.

- Circuit complexity: This is a measure of the size of the smallest quantum circuit (a sequence

of quantum gates) that can prepare a given state from some simple initial state (like all particles in

the state 0).

The theorem states that if a state has energy less than ϵn (where ϵ > 0 is some fixed constant

and n is the number of particles), then the complexity of the state is at least Ω(log n). Here, Ω(log n)

means that the complexity grows at least logarithmically with the system size.

In essence, this theorem asserts the nontriviality of low-energy states in certain quantum systems,

as evidenced by their circuit complexity. Such states cannot be easily prepared, which is an important

consideration in various fields, including condensed matter physics and quantum computing. The

complexity here is typically measured by the quantum circuit depth necessary to prepare the state.

Quantum circuit depth is a measure of the computational resources required to implement a quantum

computation: the deeper the circuit, the more complex the computation.

In this context, a “trivial” state would be one that could be prepared with a quantum circuit

of shallow (i.e., constant) depth, no matter how large the system is. So, the NLTS conjecture

asserts that for the systems it concerns, all low-energy states require quantum circuits of more than

constant depth – they require “super-constant” depth, which increases with the size of the system.

1.7 Quantum LDPC codes

A quantum Low-Density Parity-Check (LDPC) code is a type of quantum error correction code

that shares some of the favorable properties of classical LDPC codes. Quantum codes are used to

protect quantum information from errors due to decoherence and other quantum noise.

LDPC codes, in the classical setting, are a type of error correcting code characterized by a sparse

parity-check matrix. This sparsity leads to efficient algorithms for error correction. Classical LDPC

codes have been widely used in communication systems due to their capacity-achieving performance

and efficient decoding algorithms.

In the quantum setting, a quantum LDPC code is a kind of stabilizer code where the stabilizer

generators involve only a few qubits (they are “low-density”). These codes are particularly interesting

because of their potential for fault-tolerant quantum computation.
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Quantum LDPC codes are not as well-understood as some other types of quantum error-correcting

codes, like the surface code. Nevertheless, there has been significant interest in them because of

their potential for high error thresholds and efficient decoding, which are important properties

for practical quantum error correction. However, designing quantum LDPC codes that are both

high-rate and have good minimum distance is a challenging open problem.

[ABN] introduces a significant connection between quantum error-correcting codes, specifically

Quantum Low-Density Parity-Check (QLDPC) codes, and the NLTS (No Low-Energy Trivial States)

conjecture.

The robust circuit-lower bounds, which verify the NLTS conjecture, apply to local Hamiltonians

associated with certain quantum codes. Specifically, the codes in question are constant-rate and

linear-distance QLDPC codes, which are known for their scalability and error-correction capabilities.

They mention that these codes possess an additional property related to the clustering of approximate

codewords in the underlying classical codes.

1.8 The special case of quantum Tanner codes

The specific construction where they have confirmed this property exists is the Quantum Tanner

code, introduced by Leverrier and Zémor in 2022. While they hypothesize that the property might

also hold for other constructions of constant-rate and linear-distance QLDPC codes, they have not

directly proven this.

The fact that this property of clustering of approximate codewords is sufficient to confirm the

NLTS conjecture is a significant result. It opens up a new question, namely, whether this property

is inherently satisfied by all constant-rate and linear-distance QLDPC codes. This could potentially

mean that a wide class of quantum codes have a deep connection with the computational complexity

of preparing low-energy states of local Hamiltonians, and further research is needed to explore this

intriguing prospect.

1.9 A quick review of CSS codes

We describe a formalization of a CSS (Calderbank–Shor–Steane) quantum error-correcting code

with parameters [[n, k, d]]. Here’s a breakdown:

• The CSS code is built from two classical binary error-correcting codes Cx and Cz, with Cz

containing the dual C⊥
x of the other.

• Each of these classical codes can be defined as the kernel (null space) of a sparse binary matrix.

Cz corresponds to the matrix Hz with dimensions mz×n and Cx corresponds to the matrix Hx

with dimensions mx × n.

• The rank of Hz is denoted as rz and the rank of Hx is denoted as rx. These ranks represent the

number of linearly independent rows in the corresponding matrices.

• The parameter n in the quantum code corresponds to the total number of physical qubits,

which is the sum of the logical information k, and the ranks rx and rz. This can be written as

n = k + rx + rz.

• In a constant-rate, linear-distance code, the logical information k, distance d, and ranks rx and

rz are all proportional to the total number of qubits, n. This means they scale linearly with

the size of the code. This is expressed as k, d, rx, rz = Ω(n).

https://arxiv.org/abs/2206.13228
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• For the specific codes considered in their work, they also have the number of rows in the parity

check matrices, mz and mx, scaling linearly with n. This is expressed as mz,mx = Ω(n).

Overall, we’ve outlined how a CSS code is constructed and characterized, and defined the

parameters and conditions specific to our study, namely constant-rate, linear-distance codes.

1.10 Distance Measure and Approximate Codewords

We define some important terms related to the error detection capabilities of CSS quantum codes:

Distance Measure (| · |S): For any subset S ⊂ {0, 1}n, a distance measure | · |S is defined as

|y|S = mins∈S |y+ s|, where | · | denotes the Hamming weight. The Hamming weight is a measure of

the number of 1’s in a binary vector, and |y+s| denotes the Hamming weight of the sum (performed

bitwise modulo 2) of the binary vectors y and s. The distance measure |y|S therefore represents the

minimum Hamming weight (i.e., the minimum number of 1’s) among all the vectors that can be

obtained by adding y to an element s of the set S.

Approximate Codewords (Gδ
z and Gδ

x): These are the sets of vectors which violate at most

a δ-fraction of checks from the classical codes Cz and Cx respectively.

This represents the vectors that are “close” to the code Cz in terms of the fraction of parity

checks that they fail. The set Gδx is defined similarly for the code Cx.

The paper describes the concept of approximate codewords in the context of classical codes Cz

and Cx. Here’s a breakdown of the key elements:

Gδz represents the set of binary vectors that violate at most a δ-fraction of checks from the

classical code Cz. In other words, it consists of vectors y that satisfy the condition |Hzy| ≤ δmz,

where Hz is the matrix defining the code Cz, and mz is the number of rows in Hz. The matrix Hz

is typically a parity-check matrix associated with Cz. The Hamming weight of Hzy refers to the

number of nonzero elements in the vector resulting from the matrix-vector multiplication Hzy.

The set Gδx is defined similarly to Gδz but corresponds to the classical code Cx. It consists of

binary vectors that violate at most a δ-fraction of checks from Cx. The condition |Hxy| ≤ δmx is

satisfied, where Hx is the matrix defining Cx, and mx is the number of rows in Hx.

In summary, the sets Gδz and Gδx represent the approximate codewords for the classical codes Cz

and Cx, respectively. These sets consist of binary vectors that violate at most a specified fraction (δ)

of the parity checks associated with the respective codes. The concept of approximate codewords is

useful for evaluating the closeness or proximity of a given vector to a particular code based on the

fraction of failed parity checks.

To put it in a condensed matter physics context, this creates a measure of “distance” between

a state and a set of states and then defines sets of states that are “close” to our chosen classical

codes Cz and Cx.

1.11 Clustering of Approximate Codewords

This property, known as the Clustering of Approximate Codewords, sets a crucial requirement for

a CSS code to be considered for proving the No Low-Energy Trivial States (NLTS) conjecture.

1. The first part of the property pertains to vectors y that are close to the classical code Cz (i.e.,

y ∈ Gδz). It states that such vectors y either have small distance to the orthogonal complement of

the code Cx (|y|C⊥
x
≤ c1δn), or they have large distance to it (|y|C⊥

x
≥ c2n). In other words, the

vectors that are close to Cz are either also close to C⊥
x , or far from it, without any intermediate

distances. This shows a kind of dichotomy or ’clustering’ of these vectors with respect to their

distance to C⊥
x .
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2. The second part of the property mirrors the first part, but it swaps the roles of the codes Cz

and Cx. It pertains to vectors y that are close to Cx (i.e., y ∈ Gδx), and states that such vectors are

either close to C⊥
z , or far from it, without any intermediate distances.

In sum, the Clustering of Approximate Codewords property states that for a CSS quantum code,

vectors that are close to one of the classical codes (Cz or Cx) must be either close to or far from

the orthogonal complement of the other classical code, with no in-between cases.

1.12 Tanner codes with spectral expansion

The reference they make to the “classical Tanner codes with spectral expansion” refers to a particular

type of error-correcting code. Tanner codes are named after their inventor, Michael Tanner. They

are constructed from smaller “component” codes using a bipartite graph called a Tanner graph.

When these Tanner codes exhibit spectral expansion (i.e., the Tanner graph has good expansion

properties), they have certain beneficial properties in terms of their decoding performance and

error-correcting capabilities.

In the context of the Clustering of Approximate Codewords property, it seems that these Tanner

codes with spectral expansion fulfill this property, as indicated in the cited theorem from the work

of [AB22]. The use of these codes helped to prove the combinatorial version of the No Low-Energy

Trivial States (NLTS) conjecture.

As per the reference to “Lemma 9 in the Appendix”, it appears that a more generalized class of

classical codes, those with small-set expanding interaction graphs, also satisfy Property 1. However,

instead of using the distance | · |C⊥
x
, the standard Hamming weight | · | is used.

Finally, they mentioned that the quantum analog of this property, which is probably related to

the construction of quantum error-correcting codes based on these classical codes, is sufficient for

proving the full NLTS conjecture. This suggests that these specific properties of the classical codes

are crucial in extending the results to the quantum domain and thus proving the NLTS conjecture.

What is spectral expansion?

In graph theory, the expansion of a graph is a measure of how well connected the graph is. Roughly

speaking, a graph with good expansion is one where every subset of vertices is adjacent to a large

number of vertices outside the subset.

Spectral expansion refers to a property of Tanner codes where the associated Tanner graph

exhibits good expansion characteristics. The Tanner graph is a bipartite graph representing the

connectivity between the component codes in the Tanner code construction. Spectral expansion

is related to the eigenvalues of the adjacency matrix of the Tanner graph. A Tanner code with

spectral expansion has a Tanner graph with eigenvalues that are sufficiently spread out, leading to

improved decoding performance and error-correcting capabilities.

For Tanner codes, the expansion properties of the Tanner graph impact the error correcting

capabilities of the code. When the Tanner graph has good expansion properties (often quantified

by a property called the “spectral gap”), the Tanner code has strong error-correcting performance.

This is essentially because good expansion ensures that errors on different vertices (which correspond

to bits in the code) are likely to be ”visible” to a large number of check nodes, enabling the errors

to be detected and corrected.

The spectral expansion property is desirable because it indicates that the Tanner graph has good

connectivity and low density of short cycles, which can enhance the ability of the code to correct
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errors. This property is important in the decoding process and plays a role in the proof of the

combinatorial NLTS conjecture.

The terminology behind “spectral”

Yes, “spectral” in this context does indeed refer to eigenvalues. The terminology comes from the

field of spectral graph theory, which studies the properties of a graph in relation to the characteristic

polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency

matrix or Laplacian matrix.

The spectral gap of a graph is the difference between the largest and second largest eigenvalue

of its adjacency matrix or, in some contexts, its Laplacian matrix. This quantity turns out to be

closely related to the connectivity and expansion properties of the graph. In particular, graphs with

a large spectral gap are well-connected and have good expansion, which is desirable in the context

of error-correcting codes, as it helps with error detection and correction.

“Spectral expansion,” on the other hand, is a measure of how well a graph expands, i.e., how

well-connected it is, as seen through the spectrum (eigenvalues) of its associated matrices. It’s

often quantified using something called the “Cheeger constant” or “isoperimetric number,” which

measures how well-separated the graph is. A graph with high spectral expansion is one where every

subset of nodes has a large number of connections to the rest of the graph, which is again desirable

for the construction of good error-correcting codes.

1.13 CSS codes and local Hamiltonians

Local Hamiltonians of CSS codes

The described local Hamiltonian is naturally associated with the aforementioned quantum error-

correcting codes and is based on the CSS (Calderbank–Shor–Steane) construction.

For each row wz inHz, which corresponds to a stabilizer term Zwz in the quantum error-correcting

code, a Hamiltonian term 1
2 (I− Z

wz) is defined. Summing up these terms over all rows of Hz, the

Hamiltonian Hz is obtained.

An analogous process is performed for Hx, resulting in the Hamiltonian Hx. The complete

Hamiltonian H is then obtained by adding Hx and Hz.

The local terms in the Hamiltonian correspond to the checks of the classical codes, thus the

number of local terms is mx +mz, which scales linearly with n, the length of the quantum code.

The ground state energy of H is zero, which means that the ground state is a valid code state in

the associated quantum error-correcting code. This is a typical feature of quantum error-correcting

codes, where the ground state of a Hamiltonian encodes the logical quantum information, and the

excited states correspond to the presence of errors.

NB. The notation Zwz stands for applying the Pauli Z operator to those qubits for which the

corresponding entry in the vector wz is 1.

A brief review of stabilizer codes

A stabilizer group of a quantum code is a group of tensor products of Pauli matrices (I, X, Y , and

Z). Each element of this group is called a stabilizer. A quantum state that is stabilized by all

elements of this group is a codeword (or a code state) of the quantum code.

In the context of a Hamiltonian, each term corresponds to an energy level, and the total energy

of a state is the sum of the energies corresponding to each term in the Hamiltonian. Now, in a
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stabilizer Hamiltonian, we associate each term of the Hamiltonian with a stabilizer of the quantum

code.

Consider a specific stabilizer, say S. We would then have a corresponding Hamiltonian term

HS , which is designed to “penalize” states that are not stabilized by S. A common way to define

this term is as HS = (I − S)/2. We can verify that this operator has eigenvalues of 0 for states

stabilized by S (since Sψ = ψ for these states) and 1 for states not stabilized by S (since Sψ = −ψ
for these states).

So, the energy contribution of the HS term for a state ψ is 0 if ψ is stabilized by S, and it’s 1 if

ψ is not stabilized by S.

When you sum over all these terms for all stabilizers in the stabilizer group, the resulting

Hamiltonian has its lowest energy (often set to zero) for states that are stabilized by all the

stabilizers, i.e., the codewords of the quantum code. All other states have a higher energy because

they violate one or more stabilizers and thus get “penalized” with a higher energy.

This way, we create a Hamiltonian whose ground state corresponds to the code space of the

quantum code, and whose excited states correspond to erroneous states. This is very useful in

quantum error correction and quantum computation as it translates the problem of finding error-

free states into a ground state problem, which is a central problem in quantum mechanics.

1.14 Open Problems in the NLTS paper [ABN]

Question 1: Clustering of Approximate Codewords (CoAC)

Does CoAC “morally” hold for all constant-rate and linear-distance quantum codes?

This question relates to the generality of Property 1, which is tied to the clustering of approxi-

mate code-words in a CSS quantum code. It is interesting to explore if this property could be

a characteristic of a broader class of quantum codes, specifically those with constant-rate and

linear-distance.

Question 2: Connection between CoAC and small-set (co-)boundary expansion

Is there a connection between CoAC and small-set boundary and co-boundary expan-

sion? This question hints at a potential bridge between quantum and classical complexity theory.

The referenced work [HL22] involves the construction of classical Hamiltonians that are challenging

to approximate. It would be intriguing to discover if a classical analogue to the NLTS property

exists, and whether it has any implications on the quantum PCP conjecture. It also raises the

interesting point of the relationship between local testability and the NLTS property.

Problem 3: Non-commuting Hamiltonians

Can the proof techniques be generalized to prove non-trivial lower bounds for non-

commuting Hamiltonians? The present proof revolves around commuting Hamiltonians, i.e.,

Hamiltonians whose terms pairwise commute. Commuting Hamiltonians have unique mathematical

properties and have been extensively used in the context of quantum error correction and topological

quantum computing. However, in general, quantum systems are described by non-commuting

Hamiltonians, and therefore it would be of great interest to generalize these techniques to such

Hamiltonians. This could potentially lead to new insights in the context of quantum complexity

theory and many-body quantum physics.
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Exploring these questions could potentially lead to advancements in the understanding of the

complexity of quantum systems and the applicability of quantum error-correcting codes.



14 2. NLTS Hamiltonian from Good Quantum Codes

2 NLTS Hamiltonian from Good Quantum Codes

2.1 Understanding classical proofs

NP = the class of efficiently (poly(n) time) checkable proofs.

NP has complete problems such as Constraint Satisfaction Problems (CSPs).

Ci is not necessarily geometrically local.

Let Ci:0, 1
3 → [0, 1] and define C: {0, 1}n → [0,m] by C(x) =

∑m
i=1Ci(x). It is NP-complete to

decide if

1. ∃x, C(x) = 0

2. ∀x, C(x) ≥ 1

2.2 Two extensions of the notion of proof

Quantum proofs will necessitate quantum verifiers (BQP).

Kitaev showed that calculating the ground energy of local Hamiltonians serves as a complete

problem for the class QMA.

hi = local linear operator calculating energy.
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This notation is common in quantum mechanics, specifically in the context of quantum many-

body systems.

Here, hi represents a local operator that acts on part of the system to calculate the energy

associated with that part. These local operators could act on individual particles (if the system is

a collection of particles) or on individual sites (if the system is a lattice of sites), for instance.

H =
∑

i hi is the total Hamiltonian of the system, which is the sum of all the local Hamiltonians.

The Hamiltonian is an operator that encodes the total energy of the system, including both kinetic

and potential energy. It governs the time evolution of the system according to the Schrödinger

equation.

|ψ⟩ represents a state of the quantum system, and it could be a simple state associated with a

single particle or a complicated, entangled state associated with many particles.

⟨ψ|H|ψ⟩ is the expectation value of the energy of the system when it is in the state |ψ⟩. This

quantity gives you the average energy you would expect to measure if you prepared the system in

the state |ψ⟩ and then measured the energy. The way to calculate it is to take the inner product of

the state |ψ⟩ with the state obtained by acting with H on |ψ⟩.
Frustration: In the context of physics, and in particular in the study of spin systems in quantum

mechanics, the term “frustration” refers to a situation where it is impossible to simultaneously

satisfy all the interactions in the system.

In simple terms, consider a system with many parts (like a system of spins) where each part

interacts with its neighbors. Each interaction has a preferred configuration that would minimize its

energy. The system as a whole is said to be frustrated if, due to the geometry of the interactions

or the nature of the interacting parts, there is no global configuration where all the interactions

achieve their individually preferred configurations simultaneously. This leads to competition between

interactions, preventing the system from reaching a unique ground state (state of minimum energy)

that would satisfy all the interactions simultaneously.

In the context of combinatorial optimization and constraint satisfaction problems (CSPs), a

problem or system is said to be frustrated if there is no assignment of values to variables that

satisfies all constraints simultaneously.

The concept of frustration is central to many areas of physics, including spin glasses, magnetism,

and superconductivity, as well as computer science and mathematics, and plays a crucial role in

understanding the complexity of these systems.

The ground energy is defined as λmin(H) = min|ψ⟩⟨ψ|H|ψ⟩.
It is QMA-hard to decide for b− a = 1/poly(m),

1. λmin(H) ≤ a ⇐⇒ ∃|ψ⟩, ⟨ψ|H|ψ⟩ ≤ a
2. λmin(H) ≥ b ⇐⇒ ∀|ψ⟩, ⟨ψ|H|ψ⟩ ≥ b
This excerpt introduces the concept of “ground energy” of a quantum system. The ground

energy, denoted as λmin(H), is the minimum possible energy that the system can have. In terms of

the system’s Hamiltonian H and possible states |ψ⟩, it is the minimum expectation value ⟨ψ|H|ψ⟩
over all possible states.
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The text then states a problem in the context of quantum complexity theory, specifically referring

to the complexity class QMA (Quantum Merlin-Arthur), which is the quantum analog of the classical

complexity class NP. A problem is QMA-hard if any problem in QMA can be polynomial-time

reduced to it, making it among the most difficult problems in the QMA class.

The problem outlined is a decision problem about the ground energy of a quantum system:

1. The first part is to decide whether the ground energy of the system is less than or equal to a

certain value ’a’. In terms of the quantum states, this means there exists a state |ψ⟩ such that the

expectation value ⟨ψ|H|ψ⟩ is less than or equal to ’a’.

2. The second part is to decide whether the ground energy of the system is greater than or equal

to a certain value ’b’. This means that for all states |ψ⟩, the expectation value ⟨ψ|H|ψ⟩ is greater
than or equal to ’b’.

The problem is hard in the sense that there is a small gap (1/poly(m), i.e., inverse polynomial in

’m’) between ’a’ and ’b’. This makes the problem of deciding whether the ground energy falls into

this range a QMA-hard problem. This is often the case in quantum complexity theory, where the

difficulty arises from having to decide something about a quantum system based on a small energy

difference.

In NP, all proofs are morally like CSPs. In QMA, all proofs are morally like groundstates of

local Hamiltonian problems. That is, ground states of local Hamiltonians are a “canonical” form

for all quantum proofs.

It is now that we recall the general assumption NP ̸= QMA. Therefore, not all groundstates of

local Hamiltonians can be classically described in an efficiently verifiable manner.

PCP Theorem: We usually think of proofs as step-by-step checking. The PCP theorem,

however, breaks down this intuition and says that every NP problem (i.e., every proof) can be

converted into a form s.t. only O(1) bits need to be read to be 99% confident in its validity.

An alternate way of looking at this is, it’s NP-hard to decide if

1. ∃x, C(x) = 0

2. ∀x, C(x) ≥ m
2 (prev. 1)

where C(x) is analogue of ⟨ψ|H|ψ⟩.
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Hint: How is this related to the previous formulation of PCP? Well, just think of it in terms of

world 1 and world 2. If you’re blindfolded and placed in one of these worlds, it would take you only

a constant number of coin flips or checks to determine which world you’re in.

Important consequence: A notion of noisy proofs suffices! Any x s.t. C(x) < m
4 can be

probably verified with O(1) queries.

Conjecture: Every QMA-problem (i.e., quantum proof) can be converted into a form s.t. only

O(1) qubits need to be measured.

Alternate form: For ε > 0, it’s QMA-hard to decide

1. ∃|ψ⟩ s.t. ⟨ψ|H|ψ⟩ = 0 (morally)

2. ∀|ψ⟩, ⟨ψ|H|ψ⟩ ≥ εm
Similar to PCP theorem, (if quantum PCP were true) every state of energy ≤ ε

2m is a valid

proof for a QPCP local Hamiltonians. Set of proofs is much larger.

2.3 An important consequence of QPCPs

A. (If NP ̸= QMA) quantum proofs cannot be classically described, in any efficiently checkable

manner.

B. Low-energy states of QPCP local Hamiltonians are also valid proofs (since they are noisy proofs).

A and B together imply that there exist local Hamiltonians with no succinct classical

descriptions for any low-energy state.

No succinct classical description is sort of a vague idea. Maybe the above statement is a bit too

hard to tackle right now. Let’s take a more concrete version of the above problem.

Constant depth quantum circuits are classically checkable proofs for output state.

Combining the two bold statements above, we get:

No low energy trivial states. There exist local Hamiltonians s.t. no low-energy state is the

output of a constant depth quantum circuit. [Freedman-Hastings’ 14]

In fact, there was a lot of evidence to point that NLTS might have been false. For instance,

there was a landmark result by Brandao and Harrow which provided very good product state

approximations for a large family of local state Hamiltonians. So it was suspected that maybe

product state approximations, or constant depth approximations, of all local Hamiltonians existed

and maybe NLTS was false.

- If it was false, then quantum PCP would have been trivially false.

- Makes a statement about physically realizable robust entanglement. Because constant-depth

quantum circuits are classically describable states. That is, what we’re saying is that the low-energy
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subspaces of some Hamiltonians have no classical description. Or that, at constant temperatures,

some constant of the total energy, the state seems to be always entangled, no matter which low-energy

state you’re in.

Theorem [Anurag Anshu, Niko Breuckmann, Chinmay Nirkhe’22]

Local Hamiltonians corresponding to most* linear-rate and -distance QLDPC error-correcting

codes are NLTS Hamiltonians. (This includes the Leverrier-Zemor construction.)

The main result they showed is that ∃ε > 0, and a Hamiltonian family H, s.t. every state ψ of

energy ≤ εn, the minimum circuit depth to generate ψ is Ω(log n).

2.4 Proof Sketch of the NLTS Theorem

Lightcones and quantum circuits

Low-depth states are classical witnesses for energy.We claimed earlier that this is a reasonable

ansatz for energy. We will make this statement rigorous.
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If A is a local operator, and U is a quantum circuit of depth t, then UTAU is a ≤ 2t|A| local
operator.

Notice that if there’s a small orange operator outside the lightcone, then it cancels with its

conjugate.

Now we want to show that if any state can be written as the output of a short

circuit, then I can always calculate the energy very quickly.

Given a local Hamiltonian H =
∑m

i hi and a state |ψ⟩ = U|0n′⟩, we can evaluate ⟨ψ|H|ψ⟩ in
classical time 22

t · poly(n) = poly(n) when t = O(1).

Let’s see how we can do that.

If A is a local operator and U is a quantum circuit of depth t, then UAU is a ≤ 2t|A| local
operator.

Given a local Hamiltonian H =
∑m

i hi and a state |ψ⟩ = U|0n′⟩, we can evacuate ⟨ψ|H|ψ⟩ in
classical time 22

t · poly(n) = poly(n) when t = O(1).

⟨ψ|H|ψ⟩ =
m∑
i

⟨ψ|hi|ψ⟩ =
m∑
i

⟨0n′ |U†hiU|0n
′⟩
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This is a computation on O(2t) qubits. So it in fact suffices to have a circuit of depth log(log n)

– which can be witnesses.

“Low depth circuits are classical witnesses for energy”

Trivial states =⇒ local Hamiltonians

The state |0n′⟩ is the unique solution to a very simple local Hamiltonian.

HO =
∑n′

i=1 |1⟩⟨1|i – qubit-wise projectors enforcing qubits equal |0⟩.
H0 is commuting and has a spectrum of 0, 1, 2, . . . , n′ with eigenvectors |x⟩ of eigenvalue |x|.
Let HU = U†HU for depth t circuit U .
HU is commuting and has a spectrum of 0, 1, 2, . . . , n′ with eigenvectors U|x⟩ of eigenvalue |x|.
And HU is a 2t-local Hamiltonian.

Local indistinguishability

Two states |ψ⟩ and |ψ′⟩ are d-locally indistinguishable if for every region S of size ≤ d,

ψ−S = ψ′
−S

Ex. The states |±⟩ = |0n⟩±|1n⟩√
2

are locally (n− 1) indistinguishable.

Any strict reduced density matrix equals

(±)S =
|0⟩⟨0|n−|s| + |1⟩⟨1|n−|s|

2

Local indistinguishability =⇒ Ckt depth lower bounds

Two states |ψ⟩ and |ψ′⟩ are d-locally indistinguishable if for every region S of size ≤ d,

ψ−S = ψ′
−S

Lemma. If |ψ⟩ and |ψ′⟩ are d-locally indistinguishable, then if |ψ⟩ = U|0n⟩ for U of depth t,

then 2t ≥ d =⇒ t ≥ log d.

Proof. If |ψ⟩ and |ψ′⟩ are d-locally indistinguishable, then if |ψ⟩ = U|0n⟩ for U of depth t, then

2t ≥ d =⇒ t ≥ log d.

⟨ψ′|HU |ψ′⟩ =
∑
i

⟨ψ′|hi|ψ′⟩ = ⟨ψ|hi|ψ⟩ = ⟨ψ|HU |ψ⟩ = 0

But groundstate |ψ⟩ is unique!, i.e., |ψ⟩ = |ψ′⟩, is a contradiction!

Caution. Since, spectral gap of HU is 1, this argument is only robust to perurbations of O( 1n).

Using mathematics from Chebychev polynomials, we can make l.b. robust.
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Robust local indistinguishability

Π := I−HU =⇒ ||Π− |ψ⟩⟨|ψ⟩||∞ ≤ 1− 1
n which is a weak approximate projector.

∃p: R→ R of degOµ(
√
n) s.t. ||p(HU )− |ψ⟩⟨ψ||| ≤ µ.

1− p is the Chebyshev polynomial approximation of the OR function.

p(HU ) is a local Hamiltonian of locality L = O(2t.
√
n).

Now, let D be a distribution on {0, 1}n formed by measuring |ψ⟩.
Assume D(S1) > µ and D(S2) > µ. Let ΠS1 and ΠS2 be the projector onto the sets S1 and S2

respectively.

1.

||ΠS1 |ψ⟩⟨ΠS2 ||∞ > µ

Assume that the Hamming distance between S1 and S2 is > L. Then we get the following

consequence.

2.

||ΠS1 |p(HU )ΠS2 ||∞ = 0

due to the locality of HU is small.

Thm. Any distribution D s.t. D(S1), D(S2) > µ cannot be generated by a quantum circuit of

depth ≤ Ω(log L2µ
n ).

If we look at equations (1), (2) and ||p(HU )− |ψ⟩⟨ψ||| ≤ µ we realize that we have introduced a

contradiction somewhere. The only possible point of contradiction could have been thatL = O(2t
√
n)

must be greater than L.

Thus, Thm. Any distribution D s.t. D(S1), D(S2) > µ cannot be generated by a quantum

circuit of depth ≤ Ω(log(L2µ/n)).

Cor. Any state |ψ⟩ whose measurement distribution is D also has the same lower bound.
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We notice that L needs to be at least
√
n for this lower bound to be non-trivial. If L ≥ ω(

√
n) and

µ ≥ Ω(1), call D a “well-spread” distribution. Well-spread distribution is a signature of quantum

depth.

Error Correcting Codes

Expanding codes and Tanner codes

A linear code ⊆ {0, 1}n can be expressed as kerH for H ∈ Fm×n
2 .

when H is the adjacency matrix of a small-set expanding bipartite graph. The distance between

the codewords is kind of large.

Now what happens when I start to plot out the states that violate only a small fraction of the

terms?
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Starting from the codewords, I should be able to bubble out a little bit – if I violate only a few

checks. This code is LDPC, so changing a few bits, does not drastically change the number of checks

you violate. So you should definitely expect some amount of bubbling around the codewords.

What’s sort of surprising is that you’ll see some phantom clusters appear where’s there no

bubbling out at all.

Say, you take the matrix H and deleted a row. If H was a good code, then deleting a row

shouldn’t change the distance too much. But what it will do – you delete a row from H, it will

double the number of solutions. Those will form the centers of these phantom bubble clusters that

appear. If I continue this, and delete some ϵ fraction, I will still get this clustering to appear. You

can make all this rigorous by looking at small-set expansion slightly.

But let’s just pause and realize that these clusters sort of look like well-spread distributions.

Yeah, in a well-spread distribution we drew last time, there were only two regions S1 and S2. But

if you take the union of some of these clusters and call them S1 and the union of the rest of the

clusters and call them S2, you seem to have a well-spaced distribution. That is, the low energy

space of a code is a great support for a code that we hope to prove is well-spread.

You might ask this point: Why aren’t you just considering the classical code? Well, that’s a

great idea. If you consider a classical code and a Hamiltonian that corresponds to it, indeed it will

be supported on one of these kinds of distributions. But you wouldn’t get the key property required

for well-preparedness, i.e., constant mass on both halves. If you consider a classical Hamiltonians,

there will be classical solutions which are just distributions supported on singletons.

For the required property, we will now go to the third property of erasure errors.
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Erasure Errors

If you have quantum error correcting code and you have an erasure, this naturally induces local

indistinguishably.

Though experiment. Imagine that you’re walking down the street with your error-correcting

code and some of your qubits fall out. You say, that sucks – you apply your recovery map and

reconstruct it again. But say someone were to come around and pickup those missing qubits – now

your seemingly have a problem. But then you cloned the state of those missing qubits.

Is there a simple resolution to this conundrum? Whatever was encoded in that blue region was

an invariant of the code – it contained no information of about the original state, this violates the

no-cloning theorem.

Another way of saying this is, no matter what code you started off with, the reduced density

matrix on that small blue region is an invariant. In other words:

Erasure error correction imply local indistinguishability for codes.

This immediately implies that exact codewords of distance d require circuits of depth ≥ Ω(log d)

to generate. We immediately have that exact codewords have some log n circuit lower bounds because

we know of codes of polynomial distance.
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Furthermore, error-correcting codes that are LDPC naturally have a local Hamiltonian, one that

applies every local check.

Real Question: How do we prove circuit depth lower bounds for the low-energy subspace of

these code Hamiltonians?

We will need to think about something more specific now.

Optimal-parameter CSS codes

There is a class of quantum codes called Calderbank-Shor-Steane codes that correct for X-type

(bit-flip) and Z-type (phase-flip) errors separately.

They are constructed from two classical codes CX , CZ (with check matrix HX , HZ) s.t. C
⊥
X ⊆ CZ

(equiv. C⊥
Z ⊆ CX).

What really matters to us is that CSS codes have a picture that looks very similar to how classical

codes look.

There’s always two “dual” pictures, one for X and one for Z.

Expanding CSS Codes

Similar to the classical example, we consider codes that have the property that if |HZy| ≤ εm

then either

1. |y|C⊥
X
≤ C1εn or

2. |y|C⊥
X
≥ C2n
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We start off with the original bubbles and the bubbling scales like ε like in the bottom of the

picture. But we will also have these phantom bubbles with phantom clusters that appear.

So we get that if we have an expanding CSS code, and, if we consider a ε/200 low-energy state

of the code’s local Hamiltonian, measuring in the Z basis yields a distribution 99% supported on

the green patches. Likewise, if I measure in the X basis I will be well supported on the bubbles in

the Z-picture. This follows because CSS codes have roughly 50% X-checks and 50% Z-checks.

All that’s left to prove is that the distribution when I measure has mass on two separate regions.

There must be some way of partitioning the X-picture or the Z-picture so that I have some constant

mass on both sides.

All we need to argue is that the distribution is not 99% concentrated on any 1 cluster =⇒ the

distribution is well-spread (µ = 1
400) =⇒ circuit depth lower bound.

What we’re going to be able to show is that the distribution cannot be simultaneously clustered

in both the X-picture and the Z-picture.

Uncertainity principle. For sets S, T ⊆ {0, 1}n, any state ψ with distributions DX , DZ

DX(T ) ≤ 2
√

1−DZ(S) +

√
|S|.|T |
2n

Assume DZ is 99% concentrated on some Z-cluster S. Then for any X-cluster T , DX(T ) ≤ 0.99

=⇒ Either DX or DZ is well-spread.

The way we do this is just to compute the sizes of these clusters. Remember that these clusters

are formed by starting with a codeword and bubbling out a radius of ϵ. So that’s exactly what

we’re gonna get. The size |S| is bounded by this combinatorial term that scales in ϵ.

|S| ≤
(

n

O(εn)

)
.2rx ≤ 2rx+O(

√
epsilonn)

The solution term
(

n
O(εn)

)
represents violate checks and 2rx comes from the defintion of C⊥

X .

Similarly,

|T | ≤ 2rz+O(εn)

Putting this in the uncertainty principle,
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DX(T ) ≤ 2

√
1

100
+ 2rx+rz+O(

√
ε)−n =

1

S
+ 2−k+O(

√
εn)

The code rate appears in this. Because when the code is degenerate, there are many local

indistinguishabilty arguments that you’re applying in tandem.

As long as, ε < O(k2/n2), then DX(T ) < 0.99. So we’re not too supported on any one cluster.

Conclusion of the proof

CSS codes of linear-distance and linear-rate which are expanding are NLTS.

The [Leverrier-Zemor’21] construction can be shown by small modification of the distance bound

proof to satisfy these conditions.

In progress: All linear-rate and linear-distance codes are NLTS.

What’s next after NLTS?

First, NLTS is a necessary consequence of QPCP that isolated the problem of robust entanglement

from the computational question.

Next step: Introduce computation, find NLTS Hamiltonians that capture NP (or MA) computa-

tions.

Secondly, constant depth quantum circuits are just one of many possible NP proofs of the

ground-energy. (Really, quantum PCP describes that all such classical descriptions are insufficient.

Constant depth quantum circuits are just one kind.)

Other examples include stabilizer circuits, some efficiently contractible tensors, etc. or samplable-

queryable states ([Gharibian-Le Gall ’21] MA witness). We should be able to prove lower bounds

against all of these descriptions.

For one, we need to prove lower bounds for the following ansatz:
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2.5 Simons Institute Notes on Expanding and Tanner Codes (Nirkhe)
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3 SoS Lower Bounds and the SS-HDX Recipe

3.1 Sum-of-Squares (SoS) and CSPs

Sum-of-Squares (SoS) semi-definite programming (SDP) is a method used to approximate solutions

for problems called constraint satisfaction problems (CSPs). These problems require finding a

solution that meets a certain number of constraints or conditions. However, it’s difficult to determine

the structure of problems that are challenging for this SoS method.

[HL] is discussing the breakthrough that there’s now an explicit group (or “family”) of highly

unsatisfiable CSPs that the SoS method cannot solve. The breakthrough is important because

before this, the most effective method to find hard instances for SoS was pretty much brute force

search, which is a time-consuming and inefficient method.

The main result or theorem (Theorem 1.1) of this paper claims that there are specific values and

an infinite group of 3-XOR problems (a type of CSP) that have two key characteristics:

1. No assignment can satisfy more than a certain fraction of the constraints. This fraction is

represented by (1 - µ1) where µ1 is some constant between 0 and 1.

2. No problem in this group can be refuted by µ2n levels of the SoS SDP relaxation. Here, µ2 is

also a constant between 0 and 1, and n represents the size or complexity of the problem.

In simpler words, this theorem says that there is a set of very difficult 3-XOR problems that

can’t be solved by the SoS method, no matter how much you increase the complexity or the levels

of the method.

Theorem 1.1 also provides the first example of an approximation problem with short witnesses

of unsatisfiability that the Sum-of-Squares proof system cannot handle. In other words, it gives a

problem which the SoS system fails to solve. This proves that the SoS system isn’t complete or

perfect in its ability to solve all problems, which is a significant discovery in the field.

3.2 What is the SoS hierarchy?

The Sum-of-Squares (SoS) semi-definite programming (SDP) hierarchy is an advanced computational

tool that is often used to approximate solutions for constraint satisfaction problems (CSPs). CSPs

are a type of problem in theoretical computer ‘science that involve finding a solution that satisfies

a series of constraints or conditions.

Despite the SoS SDP hierarchy’s power and extensive study, we know very little about the types

of CSPs that are difficult for it to handle. While it has been known for a while that random instances

of CSPs are often challenging for SoS, there haven’t been many significant advances in constructing

explicitly hard instances for SoS, with the best methods generally being equivalent to a simple brute

force search.

[HL] leverages recent developments in locally testable codes and quantum low-density parity-

check (qLDPC) codes. With the help of these tools, they claim to have created the first explicit

family (or group) of CSPs that are very difficult to satisfy (unsatisfiable) and cannot be solved by

using a large number of rounds of SoS, specifically Omega(n) rounds. In complexity theory, the

notation “Omega(n)” usually refers to lower bound on the growth rate of a function, indicating

that a large, but unspecified, number of rounds of SoS cannot refute (disprove) these CSPs.

3.3 Theorem 1.1 (Main Result: Explicit 3-XOR Instances Hard for SoS)

Theorem 1.1 introduces a significant result related to the complexity of certain problems in the

context of the Sum-of-Squares (SoS) semi-definite programming (SDP) hierarchy. This result

https://arxiv.org/abs/2204.11469
https://arxiv.org/abs/2204.11469
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concerns 3-XOR instances, which are a type of constraint satisfaction problem that involve equations

with three variables, all linked by XOR (exclusive or) operations.

The theorem states that there exist constants (µ1 and µ2), both between 0 and 1, and an infinite

set of 3-XOR instances that can be built in deterministic polynomial time. The following conditions

apply to these instances:

1. No possible assignment of values to the variables in a given problem can satisfy more than a

(1−µ1) fraction of the constraints. This means that no matter how you try to solve these problems,

you will always leave at least µ1 fraction of the constraints unsatisfied.

2. No instance can be disproven (refuted) by using µ2n rounds of the corresponding Sum-of-

Squares SDP relaxation. Here, “n” refers to the size of the problem (for example, the number of

variables or constraints), and “relaxation” is a technique often used in optimization problems where

a harder problem is replaced by an easier one that provides an upper or lower bound. This point

implies that these instances are challenging for the SoS algorithm, as even a substantial number of

rounds of the SoS SDP relaxation fail to refute the instances.

3.4 The Integrality Gap

While Theorem 1.1 reveals an ’integrality gap’ - the difference between the optimal value of the

integer problem and its relaxation - of 1 versus (1− µ1), this means that the instances can satisfy

(1− µ1) of the constraints but they appear fully satisfiable to the Sum-of-Squares (SoS) algorithm.

This gap can be amplified to (1− ϵ) versus ((1/2) + ϵ) for any ϵ > 0 when combined with standard

PCP (Probabilistically Checkable Proof)-like reductions in the SoS hierarchy. This essentially

matches the difficulty of random 3-XOR instances, allowing for some degree of imperfection in the

solutions.

3.5 Explicit family of 3-XORs

It’s important to note that Theorem 1.1 introduces the first explicit family of Constraint Satisfaction

Problems (CSPs) that outperform more than O(log(n)) levels of the SoS hierarchy. This can be

achieved through either unique neighbor expanders, which are a certain type of graph with special

properties, or simply by brute force search, although the latter may come with some lower-order

factors.

While there were known examples of explicit constructions that go against Ω(n) rounds of SoS

in the field of proof complexity (e.g., Tseitin formulas, knapsack), these examples do not lead to

inapproximability because their satisfiability is not bounded away from 1, meaning they can be

fully or almost fully satisfied. The introduced 3-XOR instances, however, exhibit a bounded away

from 1 satisfiability, thus presenting a harder case for the SoS algorithm.

3.6 Inapproximability

In many cases, we want to understand the limits of approximation algorithms, that is, we want to

show that it’s not possible to approximate the optimal solution beyond a certain ratio in polynomial

time (unless P=NP). One of the ways this is done is by showing that a problem is hard to

approximate within some ratio for a powerful algorithmic framework like SoS. If we can show that

even the SoS hierarchy can’t approximate the solution beyond a certain point, it provides evidence

that no polynomial time algorithm can (under standard complexity assumptions).
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For instance, if you have a problem and you can show that after a certain number of rounds

in the SoS hierarchy, you can’t find a solution that approximates the optimal solution beyond a

certain ratio, then this provides a lower bound on the inapproximability of that problem. This

means that there is no polynomial time algorithm that can guarantee a better approximation ratio

(unless P=NP).

So in summary, the SoS hierarchy is an algorithmic tool that we use to solve problems, and

inapproximability is a concept that describes how well we can solve problems. By using SoS as a

benchmark, we can gain insights into the inapproximability of various problems.

3.7 Satisfiability

The satisfiability of a constraint satisfaction problem (CSP) like the 3-XOR problem refers to the

fraction of constraints that can be simultaneously satisfied by the best possible assignment of values

to the variables.

For random 3-XOR instances, the satisfiability is not known exactly but is understood to be very

high under random assignment. A random 3-XOR problem is generated by picking each constraint

(a XOR b XOR c = 0 or 1) uniformly at random from among all possible constraints on three

variables.

3.8 Satisfiability

For a large random 3-XOR problem, a random assignment of the variables will satisfy, on average,

about half the constraints. However, there exist algorithms that can find assignments satisfying

significantly more than half the constraints in polynomial time.

The fact that it’s challenging to determine the exact satisfiability or find an assignment that

satisfies all constraints is part of what makes random 3-XOR a difficult problem and an interesting

benchmark for studying the limits of approximation algorithms and the complexity of solving CSPs.

3.9 What is Theorem 1.1 doing for us?

At a high level, Theorem 1.1 provides the first example of an approximation problem with short proofs

(or “witnesses”) of unsatisfiability that the Sum-of-Squares (SoS) proof system cannot handle. This

conclusion negatively settles the question of whether SoS is complete, meaning capable of handling

all problems of this nature, in this context.

Additionally, it’s important to note that the specific choice of a 3-XOR problem is not particularly

special or essential for this result. As pointed out by earlier research (specifically [DFHT20]), which

demonstrated a similar outcome for O(
√
log(n)) levels of SoS, Theorem 1.1’s approach can be used

to construct hard instances across many types of Constraint Satisfaction Problems (CSPs). This is

achievable through standard reduction techniques.

These hard instances can include those with the largest possible difference (or “integrality gaps”)

between the best possible solutions for the exact and relaxed versions of CSPs. Specifically, this is the

case for CSPs with predicates that are resistant to approximations, based on pairwise independent

subgroups. These predicates are mathematical expressions that, when true, satisfy the constraints

of the CSP.

The “short witnesses of unsatisfiability” mentioned here likely refer to a concise evidence or proof

that a given problem instance cannot be fully satisfied. The theorem shows that, even when such

short witnesses exist, they cannot always be identified by the SoS proof system. This resolves an
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open question about the completeness of SoS for problems of this type, showing that SoS is not

always able to recognize unsatisfiable instances, even when the proof of unsatisfiability is relatively

simple.

The reference to “3-XOR” indicates that this particular constraint satisfaction problem (CSP)

served as a specific example for demonstrating this limitation of SoS. However, the implications of

the theorem extend beyond just the 3-XOR problem.

As observed in [DFHT20], Theorem 1.1 can be used to construct hard instances of many types of

CSPs using standard reduction techniques. This includes instances of CSPs with “approximation-

resistant predicates based on pairwise independent subgroups”, which are particularly difficult

problems for approximation algorithms.

The “optimal integrality gaps” phrase refers to a measure of the difference between the optimal

solutions of the integer programming and its continuous (or ’relaxed’) counterpart. An instance

with an “optimal integrality gap” is one where this difference is as large as possible, making it a

hard instance for approximation algorithms.

This theorem has far-reaching implications for our understanding of the limits of approximation

algorithms and the SoS proof system in particular. It provides both a new insight into the capabilities

of SoS and a method for constructing hard instances of a variety of constraint satisfaction problems.

3.10 Approximation-resistant predicates based on pairwise independent subgroups

In this context, “approximation-resistant predicates based on pairwise independent subgroups”

refers to a specific type of function or condition used in constraint satisfaction problems (CSPs).

1. A predicate in this context refers to a boolean-valued function or condition that is applied

to a set of variables in a CSP. For example, in a 3-SAT problem, a predicate could be a clause like

(x OR NOT y OR z), which takes the values of x, y, and z and returns either true or false.

2. Approximation-resistant means that it is hard to find an approximation to the maximum

number of predicates that can be satisfied simultaneously. In other words, even approximation

algorithms cannot significantly outperform simply picking a solution at random.

3. In the context of CSPs and predicates, pairwise independent subgroups likely means that

the set of satisfying assignments for the predicate forms a subgroup (i.e., subfamily) and any two

elements picked from this subgroup are independent.

Taken together, “approximation-resistant predicates based on pairwise independent subgroups”

likely refers to predicates for which the set of satisfying assignments forms a pairwise independent

subgroup, and finding an approximation to the maximum number of these predicates that can be

satisfied simultaneously is a hard problem. The specifics of how these predicates are constructed

and used would depend on the problem and the details of the underlying mathematical framework.

3.11 Small-set High Dimensional Expanders (SS-HDX)

Theorem 1.1 is based on a newly emergent concept of high dimensional expansion (HDX), a budding

field in computer science and mathematics that has already witnessed numerous significant results in

areas such as coding theory, approximate sampling, approximation algorithms, analysis of boolean

functions, agreement testing, and recently, Sum-of-Squares lower bounds.

Most of these works consider notions of expansion on hypergraphs, which are often called

simplicial complexes in this context. However, the authors of this paper draw inspiration from

recent advances in Locally Testable Codes (LTCs) and quantum codes and consider expansion on a

more general class of mathematical structures known as chain complexes.
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Here, the symbol “X” represents a chain complex, which is a sequence of vector spaces or modules

connected by homomorphisms. The vector spaces FX(0)
2 , FX(1)

2 , and FX(2)
2 represent different “levels”

of the chain complex, and the arrows δ0, δ1, ∂1, and ∂2 represent homomorphisms (functions that

preserve structure) between these spaces.

In the context of this paper, the chain complex is a mathematical structure that encapsulates the

relationships between different “dimensions” of the problem the authors are studying, and studying

the “expansion” properties of this chain complex can lead to new insights about the structure of

hard instances for the Sum-of-Squares (SoS) semi-definite programming (SDP) hierarchy.

3.12 Some basic notions from homology and cohomology

The symbols δ0 and δ1 represent linear maps known as the co-boundary operators, which form the

backbone of the mathematical structure of a cochain complex. These operators map each component

(or dimension) of the complex to the next.

Similarly, ∂1 and ∂2 are the transposes of δ0 and δ1, respectively, and are called the boundary

operators in the context of a chain complex.

The equalities ∂1∂2 = 0 and δ1δ0 = 0 reflect fundamental properties of chain complexes and

cochain complexes, respectively. They state that the composition of two consecutive boundary

operators (or two consecutive co-boundary operators) is the zero map, which is essential for the

concept of homology (or cohomology) that underpins the topological and algebraic study of such

complexes.

3.13 Back to SS-HDX

The concept of high-dimensional (co)-boundary expansion, an analogue of edge expansion in graphs,

is introduced in the context of chain complexes. Edge expansion in graphs is a property that measures

how “quickly” one can escape a subset of vertices by traversing edges. Similarly, high-dimensional

(co)-boundary expansion in a chain complex measures the “expansion” from one dimension to the

next in the complex.

An important structural feature of chain complexes is highlighted: any function f in the image

of δ0, known as a co-boundary, satisfies |δ1f | = 0. In simple terms, this means that applying the

co-boundary operator δ1 to a co-boundary f (i.e., a function in the image of δ0) results in the zero

function. This is analogous to how in a graph, applying the boundary operator to a boundary (an

edge) results in the zero function (no vertices).

A complex is considered a ρ-co-boundary expander when the above property is the only reason

that |δ1f | isn’t larger. This is formalized in the inequality, which states that for all functions f in

FX(1)
2 , the size of the image of f under δ1 is greater than or equal to ρ times the distance from f to

the image of δ0.

In this definition, the term “distance” could refer to a measure of how far the function f is from

being a co-boundary (a function in the image of δ0), perhaps in terms of some norm or another

mathematical measure.

In this context, |δ1f | refers to the size, or “weight”, of the function f after it has been transformed

by the coboundary operator δ1.

The weight of a function in FE2 , where E is the set of edges, is typically understood as the number

of edges for which the function evaluates to 1. More formally, given a function, the weight |f | is
defined as the cardinality of the set {e ∈ E|f(e) = 1}.
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In the context of the expression |δ1f |, f is first transformed by the operator δ1 into a new function,

and then the weight of this new function is calculated.

3.14 Generalizing from graphs to chain complexes

Chain complexes admit a natural analog of boundary (edge) expansion in graphs called high-dimensional

(co)-boundary expansion [LM06]. To see this, we first note an important inherent structural property

of chain complexes: any function f ∈ im (δ0) (called a co-boundary) satisfies |δ1f | = 0. A complex

is called a ρ-co-boundary expander essentially when this is the only obstruction to |δ1f | being large:

|δ1f | ⩾ ρ · d
(
f, im (δ0)

)
.

The concept of co-boundary expansion is a generalization of the notion of edge (or boundary)

expansion, which originates from the field of graph theory. It is used in the context of chain

complexes, which are higher-dimensional analogs of graphs. The co-boundary expansion of a chain

complex is a measure of how well the complex expands in high dimensions.

In simple terms, an edge in a graph separates two sets of vertices. Analogously, a (higher-

dimensional) face in a simplicial complex separates two (lower-dimensional) chains. The co-boundary

of a chain is the set of all faces that separate the chain from its complement.

The co-boundary expansion of a chain complex is then defined in terms of the size of the co-

boundary of every chain. Specifically, the co-boundary expansion is the minimum over all chains of

the ratio of the size of the co-boundary to the size of the chain itself. The larger the co-boundary

expansion, the better the chain complex is at expanding in high dimensions.

To make this more concrete, consider a function f that assigns a value to every element in

a certain dimension of the chain complex (for instance, the vertices in a graph, or the edges in

a hypergraph). The co-boundary of this function f is the set of all elements in the next higher

dimension that are adjacent to an odd number of elements to which f assigns the value 1.

Then the co-boundary expansion property essentially says that for every such function f , the

size of the co-boundary (the number of elements in the co-boundary) is large, unless the function f

is itself a co-boundary (which can be thought of as a trivial or uninteresting case). This is a measure

of how well the elements in the chain complex are interconnected, which has many important

applications, for instance in coding theory and in complexity theory.

The concept of high-dimensional (co)-boundary expansion, an analogue of edge expansion in

graphs, is introduced in the context of chain complexes. Edge expansion in graphs is a property

that measures how “quickly” one can escape a subset of vertices by traversing edges. Similarly,

high-dimensional (co)-boundary expansion in a chain complex measures the “expansion” from one

dimension to the next in the complex.

An important structural feature of chain complexes is highlighted: any function f in the image

of δ0, known as a co-boundary, satisfies |δ1f | = 0. In simple terms, this means that applying the

co-boundary operator δ1 to a co-boundary f (i.e., a function in the image of δ0) results in the zero

function. This is analogous to how in a graph, applying the boundary operator to a boundary (an

edge) results in the zero function (no vertices).

A complex is considered a ρ-co-boundary expander when the above property is the only reason

that |δ1f | isn’t larger. This is formalized in the inequality, which states that for all functions f in

FX(1)
2 , the size of the image of f under δ1 is greater than or equal to ρ times the distance from f to

the image of δ0.
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In this definition, the term “distance” could refer to a measure of how far the function f is from

being a co-boundary (a function in the image of δ0), perhaps in terms of some norm or another

mathematical measure.

In this context, |δ1f | refers to the size, or “weight”, of the function f after it has been transformed

by the coboundary operator δ1.

The weight of a function in FE2 , where E is the set of edges, is typically understood as the number

of edges for which the function evaluates to 1. More formally, given a function f |E → F2, the

weight |f | is defined as the cardinality of the set e ∈ E|f(e) = 1.

In the context of the expression |δ1f |, f is first transformed by the operator δ1 into a new function,

and then the weight of this new function is calculated.

The coboundary operator δ0 is defined to map a function f defined on vertices to a constant

function, i.e., a function defined on the empty set, which effectively represents the entire graph (since

any function defined on the empty set is essentially a constant). This is somewhat abstract and is

essentially a formalism, but it’s useful in setting up the properties of the coboundary operators and

the overall cochain complex.

The choice of this specific definition allows us to conveniently formulate certain properties of

the graph, like the requirement that δ1δ0 = 0 which must hold for a cochain complex, and it also

leads to the interpretation of co-boundary expansion that is equivalent to the standard definition

of boundary expansion in graphs.

Indeed, it might seem unusual that the coboundary operator δ0 would map a function f defined on

the vertices of a graph to a constant function. But keep in mind, this is a mathematical abstraction.

The choice is made to meet the requirements of a cochain complex, in which the composition of

two successive boundary or coboundary operators is zero. Specifically, in a cochain complex, we

have δiδi−1 = 0.

To achieve this in our current setup, where we’re working with a graph, we have δ1 defined on

the edges of the graph and δ0 defined on the vertices. For δ1δ0 to be zero for all inputs, we must

have δ0 map every vertex function to a constant function. This is because δ1 is taking an XOR of

function values on the vertices. If those function values are all the same (i.e., a constant), then

their XOR will always be zero, no matter what edge we’re considering.

Notice that in this setup, the only co-boundaries are im (δ0) = {∅, V }. Furthermore, for any

subset S ⊂ V and any edge e ∈ E, the value of δ11S on e is 1 if and only if e crosses the “cut”

defined by S. Here, 1S denotes the indicator function of the set S.

This observation leads to the conclusion that the ratio |δ11S |
d(1S ,im(δ0))

is equivalent to E(S,V \S)
min{|S|,|V \S|} ,

which is simply the standard definition of boundary expansion in graphs.

In other words, high-dimensional co-boundary expansion in chain complexes extends the idea

of boundary expansion in graphs, allowing us to study “expansion” properties in more complex,

high-dimensional structures.

The two ratios are essentially measures of how well-connected a set of vertices S is to the rest of

the graph. They are both forms of “expansion” of a graph or a set within a graph.

Let’s break it down:

1. |δ11S |
d(1S ,im(δ0))

: This ratio is the number of edges that “cross” the cut defined by S, divided by

the size of S. In other words, it’s a measure of how many edges are leaving the set S compared to

the size of S. If this number is large, then S is very well connected to the rest of the graph.

2. E(S,V \S)
min{|S|,|V \S|} : This ratio is the number of edges between S and the complement of S (i.e., the

rest of the graph), divided by the smaller of the sizes of S and V \S. This is the standard measure
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of “boundary expansion” in a graph. If this ratio is large, it means that the set S has many edges

connecting it to the rest of the graph compared to its size.

Therefore, the two ratios essentially quantify the same property about the set S – the number of

edges connecting S to the rest of the graph relative to the size of S. They both serve as a measure

of “expansion” in a graph, where a larger value indicates better connectivity or expansion. The

specific definitions and terms used (like δ1 or d) depend on the mathematical framework or context,

but the essential idea remains the same.

In the context of this discussion, d(1S , im(δ0)) refers to the ’distance’ between the characteristic

function of the set S (denoted as 1S) and the image of the co-boundary operator δ0. The exact

nature of this ’distance’ might vary depending on the particular mathematical setting, but it’s often

defined in terms of some norm or metric on the function space that the chain complex lives in.

On the other hand, min{|S|, |V \S|} is simply the smaller of the sizes of the set S and its

complement in the vertex set V .

To see why these two quantities might be related, consider what they represent. d(1S , im(δ0))

captures some notion of how ’far’ the function 1S is from being a co-boundary – in other words, how

far it is from being a function that could be expressed as the ’boundary’ of some higher-dimensional

object in the chain complex. When S is a subset of V that’s approximately half the size of V , this

’distance’ might intuitively be expected to be large, because such a function 1S won’t have much of

a higher-dimensional ’structure’ to it – it’s just splitting the vertices into two roughly equal-sized

groups.

Similarly, min{|S|, |V \S|} is a measure of how balanced the cut defined by S is. When this

quantity is small, the cut is very imbalanced – one side of the cut has much fewer vertices than the

other.

Therefore, both quantities capture, in different ways, some measure of how ’imbalanced’ or

’structureless’ the cut defined by S is. They are not equivalent, and their relationship could be

complex and depend on the specifics of the chain complex and the operators δ0 and δ1, but they

both serve to quantify certain aspects of the ’quality’ of the cut defined by S in the graph.

3.15 The notion of small-set boundary expander

Unfortunately, while standard boundary expansion on (random) graphs has been quite useful for

proving SoS lower bounds in the past [BSW99, Gri01b, Sch08], high dimensional co-boundary

expansion seems to be too strong a notion for this setting: good (co)-boundary expanders are

not known to exist (even probabilistically), and their structure is prohibitively restrictive in other

senses as well 2 We avoid these issues by introducing a simple relaxation of boundary expansion to

small-sets:

Definition 1.2 (Small-set (Co)-Boundary Expansion). We call X a (ρ1, ρ2)-small-set

boundary expander if the weight of any ’small’ function f ∈ FX(1)
2 satisfying |f | ⩽ ρ1|X(1)| expands:

|∂1f | ⩾ ρ2 · d
(
f, im (∂2)

)
This passage introduces a relaxation of the (co)-boundary expansion property for a chain complex

X. This relaxation is designed to focus on “small” functions, overcoming the challenges that arise

from the fact that good (co)-boundary expanders seem to be hard to find and their structures tend

to be overly restrictive.

In particular, Definition 1.2 is given for a Small-set (Co)-Boundary Expander:
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We say that the chain complex X is a (ρ1, ρ2)-small-set boundary expander if the following

property holds: for any ’small’ function f ∈ FX(1)
2 , where ’small’ means that the function satisfies

|f | ⩽ ρ1|X(1)|, the weight of the function expands under the boundary operator ∂1.

Mathematically, this property can be expressed as:

|∂1f | ⩾ ρ2 · d
(
f, im (∂2)

)
This essentially means that the weight (or “size”) of the transformed function ∂1f is at least a

ρ2 fraction of the distance from f to the image of the boundary operator ∂2.

In practical terms, this property is checking how much the weight (or “size”) of a small function

can be expanded by the action of the boundary operator ∂1. This concept is useful for designing

and analyzing algorithms, especially in contexts such as constraint satisfaction problems where the

ability to expand small sets is a valuable property.

When we talk about a “small-set” in this context, we’re referring to a function f that assigns a

value to a relatively small number of elements in the chain complex. In other words, f is non-zero

on a small number of elements.

Now, the “co-boundary” of such a function f is the set of all elements in the next higher dimension

that are adjacent to an odd number of elements for which f is non-zero.

The concept of “expansion” then refers to the size of the co-boundary of f . If the co-boundary

is large (i.e., there are many higher-dimensional elements adjacent to an odd number of elements

where f is non-zero), then we say that f expands.

So, the property of small-set co-boundary expansion essentially means that for every function

f that is non-zero on a small number of elements, the co-boundary of f is large, unless f is a

co-boundary itself.

In simpler terms, it’s a measure of how interconnected or “expanded” the elements in a complex

are, even when we’re only looking at a small subset of those elements. It’s a particularly useful

concept in the study of the efficiency of certain algorithms, and it has applications in fields like

coding theory and computational complexity theory.

3.16 Small-set coboundary expander

Similarly, X is a (ρ1, ρ2)-small-set co-boundary expander if all f ∈ FX(1)
2 s.t. |f | ⩽ ρ1|X(1)| satisfy:

|δ1f | ⩾ ρ2 · d
(
f, im (δ0)

)
We call X a (ρ1, ρ2)-small-set HDX (SS −HDX) if it satisfies both the above conditions.

This passage defines the concept of a Small-set Co-Boundary Expander and a Small-Set High

Dimensional Expander (SS-HDX).

A chain complex X is referred to as a (ρ1, ρ2)-small-set co-boundary expander if it fulfills the

following condition: For all functions f ∈ FX(1)
2 with |f | ⩽ ρ1|X(1)| (i.e., the function f is small),

the size of the function f expands under the action of the co-boundary operator δ1:

|δ1f | ⩾ ρ2 · d
(
f, im (δ0)

)
This condition means that the weight of the transformed function δ1f is at least a ρ2 fraction of

the distance from f to the image of the co-boundary operator δ0.
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3.17 The exact definition of SS-HDX

Then, the chain complex X is called a (ρ1, ρ2)-small-set high dimensional expander (SS-HDX) if

it satisfies both of the above conditions, meaning it is both a small-set boundary expander and a

small-set co-boundary expander. In other words, a SS-HDX has the property that all small sets are

expanded when acted on by both the boundary and the co-boundary operators. This generalization

of the expansion property to high-dimensional settings provides a powerful tool in the study of

theoretical computer science problems.

3.18 Constructing an infinite family of SS-HDX

We saw small-set (co)-boundary expansion on high dimensional expanders (SS-HDX) is a general-

ization of small-set expansion in graphs. The concept of small-set expansion in graphs is critical to

several problems in the hardness of approximation, especially in relation to Khot’s unique games

conjecture. The paper demonstrates in the next section how SS-HDX can naturally lead to hard

instances of XOR for the Sum-of-Squares hierarchy, providing the first link between the hardness

of approximation and high dimensional small-set expanders.

The main result, Theorem 1.1, therefore focuses on constructing an infinite family of SS-HDXs

with a growing number of vertices that can be constructed in deterministic polynomial time. While

this may seem overly ambitious, this has recently been achieved in some form in the breakthrough

constructions of quantum Low-Density Parity-Check (qLDPC) codes. More specifically, the authors

claim that the recent qLDPC codes proposed by Leverrier and Zémor already demonstrate the

properties of small-set HDX, indicating that it may be possible to achieve the requirements laid out

in Theorem 1.1.

Following that, Theorem 1.3 is introduced, which states that there exist constants ρ1, ρ2 ∈ (0, 1)

and an explicit (constructable in polynomial time) infinite family of bounded-degree (3-term) chain

complexes {Xi}. These complexes satisfy two conditions:

1. Xi has non-trivial ’co-homology’, that is, the image of δ0 is not equal to the kernel of δ1.

2. Xi is a (ρ1, ρ2)-SS-HDX, i.e., a small-set high-dimensional expander with parameters ρ1 and

ρ2.

This theorem appears to provide the key to constructing the required instances mentioned in

Theorem 1.1.

3.19 Connection to quantum locally testable codes

The paper indicates that the conditions given in Theorem 1.3 are stronger than those initially

established by Leverrier and Zémor [LZ22]. This theorem demonstrates the most potent known

form of bidirectional high-dimensional expansion to this day.

Moreover, the expansion is so robust that if one could discard the small-set requirement or

demonstrate similar bounds for a 5-term chain complex, it would solve the qLTC (quantum Locally

Testable Code) conjecture, a significant open question in the field of quantum computation. This

conjecture [KKL14, EH17, LH22a] is about the existence of quantum error-correcting codes that

are locally testable, which is a critical issue in developing robust quantum computers.
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4 From SS-HDX to Hardness

4.1 Introduction

A chain complex, particularly a Small-Set High Dimensional Expander (SS-HDX), can be trans-

formed into a hard instance of the 3-XOR problem. The 3-XOR problem is a constraint satisfaction

problem (CSP) where the goal is to find a solution that satisfies a maximum number of 3-variable

XOR (exclusive or) constraints.

The construction starts by creating a bipartite graph B with left vertex set L and right vertex

set R. Elements in L correspond to variables and elements in R correspond to the set of constraints.

A variable assignment is then fixed to the constraints.

An XOR instance associated with this graph ensures that the sum (mod 2) across neighbors of

each right vertex in R equals the variable assignment for that vertex. This is the XOR constraint.

If this sum equals the variable assignment, the constraint is satisfied.

In previous constructions for proving hardness, the bipartite graph B was typically picked at

random to satisfy strong expansion properties (which make it hard for approximation algorithms

to find a solution), and the variable assignment was also typically chosen randomly to ensure un-

satisfiability of the XOR instance (i.e., there is no assignment of the variables that can satisfy all

the constraints).

However, a significant point of interest in this discussion is the de-randomization of the variable

assignment (or the constraints). Unlike the graph B, whose choice can sometimes be de-randomized

and still retain good inapproximability guarantees, no efficient method was known to de-randomize

the variable assignment, until this work. [HL] state that prior to this, the best method was brute

force search over log(n)-size instances, which is computationally intensive.

In previous work, B was typically chosen randomly in order to achieve strong expansion properties,

and β was chosen randomly to ensure unsatisfiability of the CSP. While it’s sometimes possible to

de-randomize the choice of B and still achieve good inapproximability guarantees, de-randomizing

the choice of β has traditionally required brute force search over instances of size log(n). However,

the text seems to suggest that new methods for de-randomizing β have been developed in this

context.

4.2 From chain complex to XOR instance

The authors outline the conversion of a chain complex into an instance of XOR problem. This

conversion is an important step because it allows us to relate structural properties of the chain

complex to the hardness of the resulting XOR instance, thus revealing the interplay between

algebraic topology and computational complexity.

A chain complex is a sequence of abelian groups (or modules, or vector spaces), connected by

homomorphisms. In this case, the chain complex is represented over a finite field of order 2, F2,

and it’s a sequence of three spaces:

Here, X(0), X(1), and X(2) are the 0-, 1-, and 2-dimensional parts of the complex respectively,

and δ0 and δ1 are the co-boundary operators between these parts.

https://arxiv.org/abs/2204.11469
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To create an XOR instance from this chain complex, the authors propose a method to transform

the linear map δ0 into a graph. They note that any linear operator from FX(0)
2 to FX(1)

2 can be

represented as a matrix over F2 of size (|X(1)| × |X(0)|). This matrix can be considered as the

bipartite adjacency matrix of a graph with left vertices L = X(0) and right vertices R = X(1).

Given a function β ∈ FX(1)
2 , an XOR instance, denoted as IX,β, is constructed by adding a

constraint Cr for each r ∈ X(1):

Here, ev and er are the standard basis vectors corresponding to v ∈ X(0) and r ∈ X(1). The

term eTr δ0 gives the list of neighbors of r, thus making this construction an instantiation of the

standard bipartite framework.

The authors point out that their approach generalizes the one presented by [DFHT20] where

XOR instances were constructed using 3-dimensional simplicial complexes (4-uniform hypergraphs)

by letting triangles correspond to constraints, and edges correspond to variables. This approach is

essentially the result of applying their construction to the natural chain complex associated with a

3-dimensional simplicial complex.

4.3 Breakdown of the basic terminology

• An XOR instance is a problem in which we try to assign binary (0 or 1) values to a set of

variables such that certain constraints are satisfied, where each constraint is an XOR of a subset

of the variables.

• FX(1)
2 denotes the set of all binary functions defined on X(1). Each such function maps each

element of X(1) to a binary value.

• β ∈ FX(1)
2 is a specific function from the set X(1) to the binary numbers {0, 1}.

• Cr is a constraint that corresponds to an element r in the set X(1).

• The
∑
xv notation refers to the sum over all v ∈ X(0) for which the edge (v, r) exists in

the graph (that is, r and v are connected). Here, xv represents a variable corresponding to

v ∈ X(0).

• ev and er denote the standard basis vectors corresponding to v ∈ X(0) and r ∈ X(1). These

are vectors that have a single ’1’ in the position corresponding to the specific element (either v

or r) and ’0’ everywhere else.
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• The notation eTr δ0ev = 1 is a condition to determine whether r and v are connected. This is

equivalent to asking if there is an edge from v to r in the graph. This relationship is defined by

the linear operator δ0.

• The expression β(r) (mod2) means the output of the function β at r, modulo 2.

So, the constraint Cr for a given r states that the sum (modulo 2) of the variables xv over all v

connected to r should equal the value of the function β at r. This forms a system of XOR equations

which constitute the XOR instance IX,β.

4.4 The choice of β – the XOR instance is satisfiable iff β is a coboundary!

Remember that for any instance of XOR derived from a chain complex X and a choice of function

β, the instance is satisfiable if and only if β is a coboundary. Following a framework presented in

prior work [DFHT20], the authors choose β to be a cocycle but not a coboundary. That means,

β satisfies the condition of being closed (its boundary is zero), but it is not exact (it’s not the

boundary of another form).

When working with a sufficiently expanding complex, this particular choice of β imparts a global

structure on the XOR instance that cannot be captured by local views of the complex. The global

structure induced by β is non-trivial and cannot be discerned when looking only at small pieces of

the complex, where the homology and cohomology seem trivial. This is particularly relevant when

considering the Sum-of-Squares (SoS) method, which operates over local views of the instance.

This leads to Theorem 2.1, which essentially asserts that if you start with a chain complex X

that has non-trivial cohomology and high-dimensional expansion, you can derive XOR instances

with certain “hardness” properties. Specifically, if β is a cocycle but not a coboundary, the resulting

XOR instance will have two characteristics:

1. Soundness: The XOR instance is at most (1−µ1)-satisfiable, meaning it can’t be completely

satisfied. This reflects the infeasibility of the problem.

2. Completeness: The XOR instance cannot be refuted using up to µ2|X(0)| levels of the SoS

hierarchy. This reflects the computational hardness or intractability of the problem.

The exact values of µ1 and µ2 are not specified here, but they are within the interval (0, 1). This

indicates that there’s some degree of flexibility in the degree of soundness and completeness.

4.5 How does small-set expansion contribute to soundness and completeness?

Soundness: The soundness comes intuitively from the small-set coboundary expansion property.

If an element in Z1 \B1 is far from the coboundary, by definition of the XOR instance construction,

the instance is satisfiable exactly when β in FX(1)
2 is a coboundary. So, intuitively, the farther the

function is from being a coboundary, the less likely it is that the XOR instance is satisfiable. This

is a property of small-set coboundary expanders, and it means that instances created from them

will be far from satisfiable.

Completeness: Completeness, on the other hand, requires the full power of small-set boundary

expansion. It comes from the global structure of the (co)homology that cannot be detected through

local views of the complex. The authors note that this can be reformulated as an isoperimetric

inequality: “small, minimal functions have large boundaries.” A minimal function here is one where

adding any boundary can only increase its size (Hamming weight).

https://arxiv.org/abs/2009.05218
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The authors then outline how to use this property to prove the completeness of their instances.

They propose to combine the isoperimetric inequality with classical arguments from previous work

to show that the width of any refutation of an XOR instance in the plus-resolution proof system is

large.

A plus-resolution proof system is a system that uses a set of rules to deduce all the possible

consequences of a given set of logical statements.

Since it was previously shown that any bound on the width of a refutation transfers to a

completeness lower bound for the Sum-of-Squares method, this argument completes the proof of

completeness for the XOR instances.

4.6 Construction of refutation in the ⊕-resolution proof system and conversion to
3-XOR instances

The authors further elaborate on the construction of a refutation in the ⊕-resolution proof system,

explaining how it corresponds to a directed acyclic graph (DAG). The leaves of this DAG correspond

to the original XOR constraints, internal nodes correspond to the XOR of their parent nodes, and

the root derives a contradiction.

Every element s ∈ X(1) corresponds to a constraint in the XOR instance. A function hv ∈ FX(1)
2

is assigned to each node v in the DAG to keep track of which XOR constraints are being used.

The boundary of this function, ∂1hv ∈ FX(0)
2 , corresponds to the set of variables in the equation

corresponding to node v. Lower bounding the width of the refutation is equivalent to finding a

node with a large boundary.

Small-set boundary expansion, specifically the isoperimetric inequality, becomes relevant here.

It states that to lower bound the width of the refutation, it’s enough to find a node of ’medium’

weight. This weight is small enough to apply the inequality, but large enough to result in a large

boundary.

The authors also mention that the instances of CSPs provided by Equation (2) and Theorem

2.1 are usually instances of MAX-k-XOR and not 3-XOR, where k is the maximum degree of the

complex. However, this is not a significant issue, as the SS-HDX constructed are of bounded degree.

This means every constraint in the XOR has a constant number of variables, and every variable

appears in a constant number of constraints. This observation allows them to convert to hard

instances of 3-XOR using standard NP-reduction arguments within the SoS hierarchy while only

losing constant factors in the soundness and levels of hardness for SoS.

4.7 Application of small-set expansion for soundness and completeness

This passage explains the application of small-set expansion in ensuring soundness and completeness

for XOR instances created using simplicial complexes.

Soundness is easier to prove. The small-set co-boundary expansion guarantees that any element

in Z1\B1 is far from being a co-boundary. This implies that the XOR instance, IX,β , is satisfiable
only when β ∈ FX(1)

2 is a co-boundary. Therefore, functions that are far from being a co-boundary

are also far from being satisfiable.

Completeness is trickier to prove and needs the full power of small-set boundary expansion. The

argument revolves around the inability of local views of the complex to detect the global structure

of (co)-homology. It’s observed that small-set boundary expansion can be equivalently restated

as an isoperimetric inequality: small, minimal functions have large boundaries. The concept of

co-systolic distance is important here.
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The subsequent arguments are then leveraged to show that the width of any refutation of IX,β
in the ⊕-resolution proof system is large. This transfers into a lower bound for completeness for

Sum-of-Squares (SoS).

This proof is supplemented by detailed examination of refutations in the ⊕-resolution system.

The proof culminates with the creation of a potential function that demonstrates the existence of

an interior node with medium potential, thereby proving the desired bound.

Lastly, the author notes that the CSPs are generally instances of MAX-k-XOR, not 3-XOR.

However, the complexes constructed are of bounded degree, allowing the reduction to hard instances

of 3-XOR while only losing constant factors in the soundness and levels of hardness for SoS.

4.8 A step-by-step proof of completeness

The proof of completeness relies on some rather sophisticated concepts from graph theory, computer

science, and homological algebra. Here is a step-by-step breakdown of the proof:

Establishing the problem

The proof involves an XOR instance IX,β created using a simplicial complex with small-set boundary

expansion properties. The instance is satisfiable only when β ∈ FX(1)
2 is a co-boundary. The objective

is to show that the width of any refutation of IX,β in the ⊕-resolution proof system is large.

The “width of a refutation” in a proof system, in particular in the context of the ⊕-resolution
proof system, refers to the size of the largest clause used in the refutation. The ⊕-resolution proof

system is a specific proof system that is used for reasoning about XOR-constraints, i.e., equations

of the form x1 ⊕ x2 ⊕ · · · ⊕ xn = b, where xi are Boolean variables, ⊕ denotes addition modulo 2

(XOR operation), and b is a Boolean constant.

In the ⊕-resolution proof system, the resolution rule allows us to take two constraints x1⊕ · · · ⊕
xn = b and x1 ⊕ · · · ⊕ xn ⊕ xn+1 = b′ and derive the new constraint xn+1 = b⊕ b′. The “width” of

a constraint in this context is the number of variables that appear in the constraint.

In the context of this completeness proof, the aim is to show that any refutation of the given

XOR instance must involve a clause with a large number of variables (i.e., it has a large width),

indicating that the proof must be complex. This is typically interpreted as demonstrating the

computational hardness of the underlying problem.

In other words, “width of refutation” in the ⊕-resolution proof system measures the complexity

of the refutation (proof that there is no satisfying assignment) in terms of the maximum number of

variables involved in any step of the refutation. A large width implies that the problem is hard to

solve for the ⊕-resolution proof system.

Let’s consider a set of XOR constraints as follows:

1. x⊕ y = 0

2. y ⊕ z = 1

3. x⊕ z = 0

In this case, the XOR constraints are unsatisfiable. The refutation could proceed as follows:



45 4. From SS-HDX to Hardness

4. x⊕ y ⊕ y ⊕ z = 0⊕ 1 (from constraints 1) and 2)

5. x⊕ z = 1 (using the property that y ⊕ y = 0)

6. x⊕ z = 1 (from 5) and constraint 3), derive x⊕ z = 1 and x⊕ z = 0, leading to 1 = 0!

In this case, the width of the refutation is 3, which is the maximum number of literals in any of

the clauses.

Even though we arrived at a contradiction, which proves the unsatisfiability of the set of con-

straints, the contradiction clause itself (1 = 0) doesn’t contribute to the width since it has no literals.

The width is still determined by the maximum number of literals in any clause, which in this case

is two (x and z in the clause x⊕ z = 1).

Using an isoperimetric inequality

The small-set boundary expansion can be equivalently restated as an isoperimetric inequality: small,

minimal functions have large boundaries. This is a key property used in this proof.

The concept of small-set boundary expansion in the context of a simplicial complex has a close

relationship with an isoperimetric inequality. This relationship can be best understood by breaking

it down.

1. Small-Set Boundary Expansion: This property of a graph or complex refers to the idea that

small subsets have relatively large “boundaries”. In the context of a simplicial complex, a “boundary”

is a sort of edge or face that is adjacent to a given subset, but not contained within it. The “small-set

boundary expansion” property quantifies the idea that small subsets have disproportionately large

boundaries. In other words, for a small subset of the vertices, the set of all vertices that can be

reached by crossing a single edge (i.e., the “boundary”) is large.

2. Isoperimetric Inequality: An isoperimetric inequality, in the simplest terms, is a mathematical

statement relating the volume (or size) of a set to the size of its boundary. These inequalities arise

in various areas of mathematics, including geometry, probability, and graph theory.

In the context of this proof, the isoperimetric inequality says that for any function which is “small”

and “minimal” (in the sense that adding any boundary can only increase its size), the boundary

of the function (i.e., the set of variables appearing in the equation corresponding to the node for

which the function is defined) is large.

The equivalence between small-set boundary expansion and this isoperimetric inequality comes

from the shared focus on the relationship between the size of a set and the size of its boundary.

Essentially, the idea is that for small sets, the boundary is large, which is analogous to the idea

that for small, minimal functions, the boundary is large.

This property of small-set boundary expansion being equivalent to the isoperimetric inequality

is crucial in the proof of the completeness, as it is used to find a node in the resolution graph with

a large boundary, which in turn is used to lower bound the width of the resolution refutation.

Representing the ⊕-resolution system

Any refutation in the ⊕-resolution system is represented as a Directed Acyclic Graph (DAG), where

leaves are the original XOR constraints, internal nodes are the XOR of their two parents, and the

root is the contradiction 0 = 1.

A ⊕-resolution system is a method for finding a contradiction within a set of logical statements.

This is used in computer science to reason about problems and find solutions.
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We can visualize this process using a Directed Acyclic Graph (DAG), which is a graph with

nodes and edges, where the edges have a direction (from one node to another), and there are no

loops (a path that starts and ends at the same node).

Here’s how the DAG works in this case:

1. Leaves (the nodes with no incoming edges): These represent the original constraints in the

problem, which are statements involving XOR operations.

2. Internal nodes (nodes that have both incoming and outgoing edges): These represent new

statements that we derive from combining the statements of their ’parent’ nodes. In this case,

we combine the parent statements using the XOR operation. For example, if we have two parent

nodes with statements ’A⊕B = 0’ and ’B ⊕ C = 1’, we can combine these to get a new statement

’A⊕ C = 1’ at the internal node.

3. Root (the node with no outgoing edges): This is the final statement that we derive. In a

successful ⊕-resolution refutation, the root node contains a contradiction, which in this case is

’0 = 1’. This contradiction demonstrates that the original constraints cannot all be true together.

In summary, this graph is a visual way to keep track of how we derive new statements from the

original constraints by XOR-ing them together, with the aim of finding a contradiction.

Assigning functions

Each node v in the DAG is assigned a function hv ∈ FX(1)
2 that tracks which XOR constraints

are being used at that node. The boundary of this function, ∂1hv ∈ FX(0)
2 , is the set of variables

appearing in the equation corresponding to node v.

To illustrate this concept, let’s consider a simple example using the XOR resolution system.

Assume we have the following three XOR constraints as our original problem:

1. a⊕ b = 0 2. b⊕ c = 0 3. c⊕ d = 0

We’ll represent these constraints in our Directed Acyclic Graph (DAG) as the leaves (the starting

points).

Now, let’s perform an XOR resolution operation on constraints 1 and 2. This gives us a new

constraint, a ⊕ c = 0. We represent this as a new node in our DAG, which becomes a parent of

nodes 1 and 2.

We could denote the function hv for this new node v as a binary vector where each position

corresponds to one of the original constraints (1, 2, 3), and the value at each position is 1 if the

constraint contributes to the node and 0 otherwise. For our new node, the function would be

hv = (1, 1, 0), because the new node is the result of XORing constraints 1 and 2.

The boundary ∂1hv of this function is the set of variables in the equation at node v. For our

new node with the equation a⊕ c = 0, the boundary is ∂1hv = {a, c}.
So, in this example, the function hv helps us keep track of the original constraints that contribute

to the derived constraint at node v, and the boundary ∂1hv tells us which variables appear in the

derived constraint.

Finding a node with large boundary

To lower bound the width of the refutation, a node with a large boundary needs to be found.

In simple terms, finding a node with a large boundary means we are trying to identify a node in

the resolution graph where a significant number of variables come into play.
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Recall that the boundary of a node represents the set of variables involved in the equation

corresponding to that node. Therefore, the larger the boundary, the more variables are involved in

the equation at that node.

Why is this important? Well, it’s related to the complexity of the resolution process. In our

context, the width of the refutation, which we’re trying to lower bound, is essentially the size of the

largest set of variables involved at any step in the proof. A node with a large boundary contributes

more to this width.

In other words, the larger the boundary, the more complicated (or ’wider’) our refutation becomes,

and therefore it becomes more difficult to refute the given instance in the ⊕-resolution system. This,

in turn, is connected to the hardness of the problem: if refutations have large width, the problem

is difficult to solve, and hence it is more likely to be a hard instance for certain algorithms like the

Sum-of-Squares (SoS) hierarchy.

Using small-set boundary expansion

This is where the isoperimetric inequality (or small-set boundary expansion) is crucial. The inequality

suggests that to achieve a large boundary, it suffices to find a node v of ’medium’ weight that is

small enough to apply the inequality, but large enough to result in a large boundary.

Small-set boundary expansion is a concept that relates the size of a set with the size of its

boundary (the items it touches or is adjacent to).

In our graph, remember that each node has an assigned function and a corresponding boundary

that consists of the variables used in that function.

This small-set boundary expansion property - or isoperimetric inequality - tells us something

interesting: if we have a node (or, thinking in terms of the function, a set of constraints) that is

’medium’ in size, its boundary (the variables it touches) is going to be large.

Why is this ’medium’ size important? Well, it has to do with the nature of the isoperimetric

inequality itself. If our set of constraints (node) is too small, it might not touch enough variables to

make a large boundary. But, if it’s too large, we could be going beyond the conditions where the

isoperimetric inequality applies.

So we’re looking for a ’Goldilocks’ node - not too small, not too large - a medium one. This

will help us ensure that we’ve got a large boundary (which, as we’ve discussed before, increases the

width of the refutation, making the problem harder to solve).

Establishing a potential function

Standard potential arguments are used to establish a potential function that tracks this weight

throughout the DAG. The proof argues that the leaves have small potential, the root has large

potential, and that potential is sub-additive.

A potential function is like a scorekeeper. It watches what’s going on in the game (in our case,

as we navigate through the graph) and assigns a value - the “potential” - to each state of the game.

It’s a tool used in proofs to help keep track of the properties of the system we’re interested in.

Here’s how it works in this context:

- The potential function keeps track of the ’weight’ or size of each node’s function (remember,

these represent sets of constraints).

- We then argue that the leaves (nodes at the end of the graph with no children) have a small

potential. That’s because they are just single constraints - they can’t combine with other constraints
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to create more complex ones, hence their potential (or ability to increase the width of a refutation)

is small.

- On the other hand, the root node (the one that represents our contradiction) has a large

potential. This is the point where all our constraints have been combined together to form a

contradiction, so it’s the most complex part of our system.

- The ’sub-additive’ part means that if we take two nodes and combine them, their combined

potential is less than or equal to the sum of their individual potentials before they were combined.

This is a common property in potential function arguments and it ensures that the potential does

not blow up as we traverse through the graph.

- The use of the potential function combined with our knowledge about small-set boundary

expansion allows us to argue that somewhere in our graph, there must be a node with a medium

potential and a large boundary. As we discussed earlier, this implies a large width of refutation,

completing our proof.

4.9 Completing the proof

This argumentation implies the existence of an interior node with medium potential, hence achieving

a node with large boundary and demonstrating a lower bound for completeness for SoS.

The key idea is that through the potential function, we can track how much ’weight’ (or size) is

being passed along as we move through our graph from the leaves (the original constraints) towards

the root (the contradiction). This ’weight’ corresponds to the amount of XOR constraints being

utilized.

The potential function is set up so that the leaves of the graph have a small potential (since

they are just single constraints) and the root has a large potential (since it contains all the XOR

constraints combined into a contradiction).

Now, because the potential function is sub-additive (meaning, when you combine two nodes,

their combined potential is less than or equal to the sum of their potentials before combining), there

must be a point moving from the leaves to the root where the potential is neither too small (like the

leaves) nor too large (like the root), but somewhere in the middle - a node with ’medium’ potential.

But here’s the important part: due to the small-set boundary expansion property, a node with a

’medium’ weight has a large boundary. And since the boundary represents the number of variables

in the XOR equation at that node, this implies a large width of refutation.

In essence, because of the properties of the simplicial complex (small-set boundary expansion)

and the way the potential function is set up, we can argue that there must exist a refutation in the

⊕-resolution system that has a large width. This implies the lower bound for completeness for the

Sum-of-Squares proof system, thereby completing the proof.

So, to put it simply: the potential function helps us navigate through the graph from simpler

to more complex parts, and due to the properties of the graph, we are guaranteed to find a point

where the complexity (width of refutation) is sufficiently large. This proves the robustness of the

system (completeness) for dealing with complex instances.
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5 Constructing SS-HDX

5.1 Construction of Small-Set High-Dimensional Expanders (SS-HDX)

This section of the paper discusses the construction of Small-Set High-Dimensional Expanders (SS-

HDX), a class of chain complexes that are useful for creating hard instances of the 3-XOR problem.

The construction of SS-HDX relies on recent advances in the field of locally testable codes (LTCs)

and quantum low-density parity-check (qLDPC) codes.

Here is a breakdown of the key points discussed in this section:

1. Quantum LDPC Codes and Expanding Chain Complexes: The authors first discuss

the relationship between quantum LDPC codes and expanding chain complexes. Quantum LDPC

codes are error-correcting codes used in quantum computing, characterized by the property that

each check (or constraint) involves only a small number of bits. These codes can be represented

as chain complexes, where each dimension of the complex corresponds to a type of constraint in

the code. The “expansion” property of the code relates to its ability to spread out errors, enabling

efficient error detection and correction.

2. The qLDPC Construction of Leverrier and Zémor: The authors review a specific

construction of qLDPC codes proposed by Leverrier and Zémor in 2022. This construction is of

particular interest as it provides a way to construct chain complexes with desired properties.

3. Proof of Small-Set (Co)-Boundary Expansion: The authors present their own proof

demonstrating that the chain complexes resulting from the qLDPC construction exhibit “small-set

(co)-boundary expansion”. This property is crucial because it is connected to the computational

complexity of solving the corresponding XOR instances, as discussed earlier in the paper.

5.2 Connection between quantum LDPC codes and chain complexes

In this section, the paper introduces the connection between quantum LDPC (Low-Density Parity-

Check) codes and chain complexes, which are both tools used in the study of error correction and

data encoding.

A classical error-correcting code is a method used to encode a string of k bits into a longer string

of n > k bits, allowing for the recovery of the original string even if some bits in the encoded string

are flipped or corrupted. One common type of such codes is linear codes, which are defined by

linear operators.

A linear operator M : Fn2 → Fn−k2 , also known as a parity check matrix, is used to define the

code C, which is the kernel ofM . Here, Fn2 represents all bit strings of length n, and Fn−k2 represents

all bit strings of length n− k.
In the context of error-correcting codes, the “kernel” of M refers to the set of bit strings that

are mapped to the zero string by M . These are the valid codewords in the code, representing the

bit strings that can be transmitted without any error.

Regarding the footnotes:
9: The width of a refutation is a measure of complexity in proof systems. It is defined as the

maximum number of variables appearing in any equation during the proof.
10: This footnote explains the rules of the ⊕-resolution proof system, a type of proof system

used for reasoning about XOR constraints. In this system, a “refutation” is a sequence of steps

leading to a contradiction, demonstrating that the XOR instance is unsatisfiable.
11: Here, the term “weight” is used in a slightly different sense than the standard Hamming

weight (which counts the number of 1s in a bit string). It also takes into account the distance from



50 5. Constructing SS-HDX

the boundary of a region in the chain complex.

5.3 Quantum Error-Correcting Codes and CSS Codes

In this section, the authors delve into the topic of quantum error-correcting codes. While classical

error-correcting codes are used to protect classical bits against corruption, quantum error-correcting

codes are designed to protect quantum bits, or qubits, from errors. These errors can be of two

types: X-type errors, analogous to bit flips in classical codes, and Z-type errors, which correspond

to phase flips.

A class of quantum error-correcting codes that is particularly useful is the CSS (Calderbank-

Shor-Steane) codes. These codes have the advantage of being describable using classical terms. A

CSS code is defined by two classical linear codes, denoted C0 and C1, which are respectively the

kernels of two different parity check matrices, denoted M0 and M1.

These two codes are related in such a way that the orthogonal complement of C0, denoted C⊥0 , is
a subset of C1. This implies that the product of M1 and the transpose of M0 is a zero matrix.

The dimension k of the CSS code is given by the difference between the dimensions of C0 and

C⊥0 , while the distance d of the code measures its error-correcting capacity. The distance is defined

as the minimum of dx and dz, where dx and dz represent the minimum Hamming weight (number

of non-zero bits) among the non-zero vectors in C0 \ C⊥1 and C1 \ C⊥0 , respectively.
Low-Density Parity-Check (LDPC) codes are a type of error-correcting code characterized by

a parity check matrix that has a small number of ones in each row and column, hence the name

’low-density’. The quantum LDPC conjecture, which was recently resolved, states that there

exists a family of quantum CSS codes with linear dimension and distance, where M0 and M1 are

LDPC matrices. This means that there are quantum codes that can simultaneously achieve a

large encoding rate (k = Θ(n)) and strong error-correction capacity (d = Θ(n)), while also being

efficiently encodable and decodable due to the low density of the parity check matrices.

Parity check matrices are used for encoding and decoding error-correcting codes. Specifically, a

parity-check matrix is a binary matrix that represents the linear equations that the codewords of

an error-correcting code must satisfy. The sparsity, or low-density, of these matrices can greatly

improve the efficiency of both encoding and decoding.

1. Efficient Encodability: Encoding a message into a codeword involves matrix multiplication.

When the parity-check matrix is sparse (with mostly zeros), the number of operations required for

this multiplication is significantly reduced. While dense matrices typically have a complexity of

O(n2) or O(n3) (depending on the algorithm used), sparse matrices can have a complexity as low

as O(n), where n is the number of bits in the message or codeword.

2. Efficient Decodability: Similarly, decoding received data back into a message involves

solving a system of linear equations. This task can be computationally expensive for dense matrices.

However, if the parity-check matrix is sparse, iterative decoding algorithms such as belief propagation

(used for LDPC codes) can be employed. These algorithms leverage the sparsity of the matrix to

achieve lower computational complexity and faster decoding speed.

In summary, the low density of parity-check matrices can significantly reduce the computational

complexity of encoding and decoding, making these processes more efficient. This property makes

LDPC codes particularly well-suited for applications requiring fast and efficient encoding/decoding,

such as high-speed data transmission and storage systems.
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5.4 Connection between Quantum CSS Codes and Chain Complexes

The key idea in this section is the connection between quantum CSS codes and chain complexes.

A quantum CSS code naturally induces a chain complex, which is a sequence of vector spaces (or

groups) connected by linear maps over the field with two elements, F2, and vice versa.

Given a quantum CSS code defined by the matrices M0 and M1, the induced chain complex is

represented as:

Here, the linear maps between the vector spaces are given by the matrices defining the CSS code,

and mi denotes the dimension of the image of the map Mi, or equivalently, the rank of the matrix

Mi.

Similarly, given a chain complex represented as:

one can obtain a quantum CSS code by setting M0 : = ∂1 and M1 : δ1. This means that the

linear maps between the vector spaces in the chain complex can be treated as the parity-check

matrices for a CSS code.

This connection allows for the translation of properties of the quantum code into topological

properties of the corresponding chain complex, and vice versa. It is a key idea for the approach

presented in the paper to construct hard instances of the 3-XOR problem.

5.5 Translation between Quantum CSS Codes and Chain Complexes

This part delves deeper into the connection between quantum CSS codes and chain complexes,

demonstrating that many properties of the quantum codes can be translated into a homological

language related to the study of algebraic topology.

Here are the mappings of these properties:

1. Cycles and Co-cycles: The classical codes C0 and C1 in the quantum CSS codes are analogs

of cycles and co-cycles in the chain complex. A cycle is an element of the kernel of a boundary map,

indicating that it is mapped to zero by the boundary map. A co-cycle is an element of the kernel

of a co-boundary map.

2. Co-boundaries and Boundaries: The dual codes C⊥0 and C⊥1 in the quantum CSS codes

correspond to co-boundaries and boundaries in the chain complex. A boundary is an image of an

element under a boundary map, and a co-boundary is an image of an element under a co-boundary

map.

3. Dimension: The dimension of the quantum CSS code, denoted as k, corresponds to the

dimension of the cohomology of the chain complex. Cohomology measures the extent to which the

boundary of a boundary fails to be zero.
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4. Maximum Degree: The maximum degree of the chain complex corresponds to the maximum

density of the parity check codes. Thus, the conditions of having bounded degree and being LDPC

(low-density parity-check) are equivalent.

5. (Co)-systolic Distance: The X-distance and Z-distance in the quantum CSS codes corre-

spond to the (co)-systolic distance of the chain complex. This measures the minimum weight of

any (co)-cycle that is not a (co)-boundary. In other words, it represents the smallest size of a “hole”

in the complex.

The equivalences presented above establish a bridge between the world of quantum CSS codes and

algebraic topology. They illustrate that problems and properties in one domain can be translated

and studied using the language of the other. This connection is fundamental to the methods

employed in the paper to construct hard instances for the 3-XOR problem.

5.6 Establishing Conditions for Constructing Hard Instances

The papers [PK21a] and [LZ22] have presented explicit constructions of good quantum Low-Density

Parity-Check (LDPC) codes. These codes map to bounded-degree chain complexes with non-trivial

cohomology and linear co-systolic distance. These properties partially satisfy the requirements

for constructing hard instances of the 3-XOR problem, as they ensure the soundness of the XOR

construction.

However, in order to complete the proof of Theorem 1.1, the authors must further demonstrate

that these complexes also satisfy a stronger condition known as “small-set (co)boundary expansion.”

This property, when combined with the previously mentioned conditions, guarantees not only the

soundness but also the completeness of the XOR problem. It serves as the final piece needed to

establish the hardness of the constructed instances.

Two footnotes are provided for clarification:

1. The authors explain that the parity check matrix is traditionally denoted by ’H’, but they

have chosen to use ’M’ to avoid conflicts with the existing notation for homology.

2. The term C⊥0 denotes the dual code consisting of all elements orthogonal to C0. This code is

generated by the transpose of the parity check matrix MT
0 .

5.7 Leverrier and Zémor’s qLDPC Codes

The authors now introduce the work of Leverrier and Zémor ([LZ22]), which focuses on quantum Low-

Density Parity-Check (qLDPC) codes. These codes play a crucial role in the authors’ construction

of hard instances for the 3-XOR problem. A more detailed exposition of this work can be found in

sections 7 and 8 of the paper.

Leverrier and Zémor’s qLDPC codes are based on Tanner codes, a classical concept in coding

theory. A Tanner code is derived from a regular graph G = (V,E) and a linear code C of length n0.

Here, n0 denotes the degree of the vertices in the graph, indicating that each vertex is connected

to n0 other vertices. The Tanner code T (G, C) is defined as the set of all vectors c in FE2 such that

for each vertex v in the graph, the values on the edges connected to v form a vector in the linear

code C.

The breakthrough contribution of [LZ22] lies in the observation that a quantum CSS code can

be constructed from two Tanner codes derived from a higher-dimensional object called the left-right

Cayley complex. This complex was recently employed in [DEL+21] to construct c3-Local Testability

Codes (LTCs).
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5.8 Left-Right Cayley Complex and qLDPC Construction

The construction proposed by Leverrier and Zémor involves the utilization of a mathematical object

called the left-right Cayley complex, which relies on a group G and two sets of group generators

A = A−1 and B = B−1. Here is a more detailed explanation:

- The vertex set V of the Cayley complex is identified with the group G.

- The edges are determined by two distinct Cayley graphs, namely C(G,A) and C(G,B), which

are derived using the sets of generators A and B, respectively.

- Higher-dimensional “squares” are formed by the set {g, ag, gb, agb}, where g is an element of

G, and a and b are generators from A and B, respectively.

To construct their qLDPC codes, Leverrier and Zémor consider a double cover of this complex.

They define a vertex set V = V0 ∪ V1, where V0 = G× {0} and V1 = G× {1}.
The “A-edges” and “B-edges” are given by:

EA = {{(g, 0), (ag, 1)}|g ∈ G, a ∈ A}, EB = {{(g, 0), (gb, 1)}|g ∈ G, b ∈ B}.

Finally, the squares are defined by the set:

F = {{(g, 0), (ag, 1), (gb, 1), (agb, 0)}|g ∈ G, a ∈ A, b ∈ B}.

This complex structure serves as the foundational framework for their construction of quantum

LDPC codes.

5.9 Construction of qLDPC Codes from Square Objects

Leverrier and Zémor’s construction of qLDPC codes involves the utilization of square objects in the

double cover of the Cayley complex. These squares enable the definition of two graphs, denoted as

G□0 and G□1 , with vertices in V0 and V1, respectively. Each square is regarded as an edge connecting

two vertices within either V0 or V1.

To capture the local views around each vertex (g, i) in these graphs, squares are represented by

{(g, i), (ag, 1− i), (gb, 1− i), (agb, i)}, where a ∈ A and b ∈ B. These local views can be envisioned

as square matrices, with rows indexed by A and columns indexed by B, assuming |A| = |B| = ∆.

Leverrier and Zémor propose the use of Tanner codes, specifically C0 = T
(
G□0 , C⊥

0

)
and C1 =

T
(
G□1 , C⊥

1

)
, to construct a quantum CSS code satisfying C⊥0 ⊂ C1. They observed that this inclusion

holds when local codes C0 = CA ⊗ CB and C1 = C⊥
A ⊗ C⊥

B are tensor products of linear codes

CA ⊆ FA2 and CB ⊆ FB2 .
Furthermore, they demonstrated that if codes CA, CB, C

⊥
A , C

⊥
B possess linear distance and codes

C⊥
1 and C⊥

0 meet certain robustness properties, the resulting quantum code exhibits linear distance.

By employing random base codes CA, CB that satisfy these properties with high probability, they

successfully complete the construction. Since the base codes have constant size, the construction

process can be explicitly brute-forced.
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5.10 Small-Set (Co)-Boundary Expansion

The authors seek to prove the property of small-set (co)-boundary expansion for the quantum

CSS code constructed by Leverrier and Zémor. This property is associated with the isoperimetric

inequality for small, minimal functions.

To this end, they consider a chain complex:

To establish small-set co-boundary expansion for this chain complex, they aim to demonstrate

the existence of constants ρ1, ρ2 ∈ (0, 1) such that for any minimal x ∈ Fn2 with weight |x| ⩽ ρ1n,

the size of the boundary is significant: |δ1x| ⩾ ρ2|x|.
To accomplish this, they employ a proof by contradiction. Assuming |δ1x| < ρ2|x|, they aim to

prove that x cannot be minimal by finding y ∈ B1 (a set of 1-boundaries) such that |x+ y| < |x|,
which contradicts the assumption of minimality. In other words, they intend to show that if x

has a smaller-than-expected boundary, then it cannot be a minimal element, thus contradicting

the original assumption that x is minimal. This establishes the small-set (co)-boundary expansion

property for the complex.

5.11 Extension to Arbitrary Functions

In this paragraph, the authors differentiate their approach from that of [LZ22] in proving co-systolic

distance properties. The key distinction lies in the consideration of arbitrary functions, as opposed

to solely focusing on co-cycles (elements of the cohomology group), as done in [LZ22].

Within this construction, a co-cycle corresponds to a codeword in the Tanner code T
(
G□1 , C⊥

1

)
.

In a more intuitive sense, co-cycles can be seen as functions defined on the edges of the graph, such

that the values of the function around any vertex form a codeword of C⊥
1 .
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However, since the present proof considers arbitrary functions, these functions do not necessarily

exhibit this structured property. Consequently, the authors need to account for “violations,” i.e.,

the local views around vertices that do not correspond to codewords of C⊥
1 . These violations occur

where the function x fails to be a co-cycle, or equivalently, where the boundary operator δ1x is

non-zero.

5.12 Partitioning of Vertices based on Local Views

In this paragraph, the authors describe the partitioning of vertices in the set S, which represents

the vertices incident to any square in function x. The partitioning is done based on the “local view”

of x around each vertex.

The set S is divided into three categories: violated vertices Sv, normal vertices Sn, and exceptional

vertices Se:

- A vertex is considered violated and belongs to Sv if the local view of x around that vertex does

not form a codeword in the code C⊥
1 .

- If the local view forms a codeword, the vertex is classified as normal and falls into Sn if the

weight of the codeword is less than w = ∆3/2−ε. Otherwise, it is deemed exceptional and is placed

in Se.

This categorization based on weight stems from the robustness condition of the local tensor code,

which ensures that codewords with weight less than w are predominantly composed of zeros, except

for a small number of positions.

Furthermore, the authors note that in the local view of a normal vertex, each column is at most

O
(
∆1/2−ε

)
away from a codeword in CA, and similarly for each row and codewords in CB. This

observation relates to the Hamming distance, suggesting that any column or row in the local view

of a normal vertex is close to being a codeword in the respective code.

5.13 Finding a Vertex with Large Intersection

This paragraph describes the subsequent step in the proof, which involves finding a vertex v ∈ V0
that shares a substantial number of columns or rows with the set of normal vertices Sn (specifically

Ω(∆) columns or rows).

Under the assumption that the sets of exceptional vertices Se and violated vertices Sv are not

significantly larger than Sn, the robustness condition of the code leads to the conclusion that

the local view of vertex v is in close proximity (in terms of Hamming distance) to a codeword

c ∈ CA ⊗ CB, while also possessing a high total weight (precisely Ω
(
∆2

)
).

Given this, the authors construct a vector y ∈ B1 such that y matches c on the local view of v

and is zero elsewhere. Since x+ y and x differ only in the local view of v, and because the weight

of x in that view exceeds the weight of x+ y (as x+ y incorporates the lower-weight codeword c),

it follows that the weight of x + y is less than the weight of x. This fulfills the desired property

for the proof by contradiction, demonstrating that x was not minimal and contradicting the initial

assumption.

5.14 Finding Heavy Edges and Completing the Proof

This paragraph discusses the main technical aspect of the proof, which involves identifying the

vertex v ∈ V0 that shares numerous columns or rows with the set of normal vertices Sn. A subset

T ⊂ V0 is defined as the vertices that share at least one “heavy” column or row with a normal
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vertex. Here, a “heavy” column or row contains a significant number of 1s. Alternatively, a “heavy”

edge is one that is present in multiple squares in x.

The objective is to demonstrate the existence of many such “heavy” edges that connect S (the set

of vertices incident to any square in x) and T . By utilizing the expansion property of the underlying

graph and the assumption |δ1x| < ρ2|x|, it can be proven that the subsets T , Se (the exceptional

vertices), and Sv (the violated vertices) are small in comparison to Sn.

Consequently, a typical vertex in T possesses not just one, but Ω(∆) heavy edges connecting

to Sn. This, in turn, corresponds to sharing Ω(∆) rows and columns with normal vertices. This

completes the proof of small-set co-boundary expansion.

Note:

15 As an aside, it is mentioned that the codes CA and CB can be chosen to have linear distance,

ensuring that the local view of vertex v exhibits a high total weight.
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6 Max Hopkins’ Talk on Explicit SoS Lower Bounds from HDX

6.1 Sum of Squares Hierarchy

It’s a powerful algorithmic paradigm for algorithmic optimization.

1. Hierarchy of SDP relaxations roughly looking at t-local assignments. (Allowed to look at t

variables at once, along with some local consistency checks.)

2. Best-known algorithm for CSP approximation (including unique games).

3. Optimal under UGC! [Rag08]

A CSP consists of variables {xi}ni=1 and constraints {Cj}mj=1.

- Value of CSP is maximum number of satisfiable constraints. - Examples: XOR, SAT, UG...

We say a CSP (family) is ‘hard to approximate‘ for SoS if:

1. (Soundness): CSPs are far from satisfiable (Value ¡¡ 1)

2. (Completeness): SoS ‘thinks‘ they are satisfiable (SDP Value ≈ 1)

Motivating Question: What type of structure is hard for SoS?

What CSPs are hard for SoS?

Classical answer: Random CSPs are hard! [Gri03, Sch08, Tul09]

Consider XOR instance defined by bipartite graph:

And an assignment β ∈ FX(1)
2

XOR− instance(X,β)|{Ci = βi}

If underlying graph is an expander, random β is ‘hard‘ for SoS [Gri03]. - For any assignment,

1/2 constraints violated w.h.p. - But due to expansion, still looks satisfiable locally !

Grigoriev proved that if the underlying bipartite graph is a good expander, and you pick the

assignments of β randomly, then this is hard for the SoS paradigm.

You have to go all the way upto linear levels of SoS to be able to find a contradiction. Roughly

speaking, why is this the case: Because I’m picking β randomly, if I have a fixed assignment to

variables, the probability for each individual constraint, that I’m going to pick the right bit is 1
2 . So

by Chernoff bound and union bound you can argue that with a very high probability always about

half of the constraints are going to be violated. So this a CSP that is very far from being satisfiable.

Yet, due to expansion, that is the graph doesn’t turn in on itself in a way, it’s very hard to find

contradictions, even though only half of the things are satisfiable.

This doesn’t tell us much about the structure of hard instances. Can we find explicit examples?

Idea: Replace randomness with high-dimensional structure [DFHT’21]
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We’re going to look at stacked bipartite graphs.

Pick β ∈ F
X(1)
2 s.t. i. β satisfies all global checks. ii. (X,β) is unsatisfiable.

Hope. If X is an HDX, instance will be hard!

i. [DFHT21] Hardness vs. O(
√

log(n))-levels via simplicial HDX.

ii. [HL22] Hardness vs. Ω(n)-levels via expanding chain complexes.

Chain Complexes (Math Formalism)

Chain complexes are a generalization of Simplicial Complexes. i. Let X(0), X(1) and X(2) be sets.

ii. Let δ0 : FX(0)
2 → FX(1)

2 and δ1: F
X(1)
2 → FX(2)

2 be linear maps.

Chain Complex. The sequence X : FX(0)
2

δ0→ FX(1)
2

δ1→ FX(2)
2 is called a (3-term) chain complex

if δ1δ0 = 0.

{δ1, δ0} are called the co-boundary operators.

B1: = Im(δ0) are called the ‘co-boundaries’.

Z1 := Ker(δ1) ⊃ Im(δ0) are called co-cycles.

H1 := Zi

Bi is called the ‘co-homology’.

A set S ⊂ X(1) ‘expands’ if |∂11S | is large.

The Graphical Interpretation

Chain complexes also have a ‘graphical’ interpretation.

Let (X(0), X(1), δ0) and (X(1), X(2), δ1) be bipartite graphs.

Graphs form a chain complex if δ1δ0 = 0 (mod 2). This has a natural combinatorial interpreta-

tion:

Number of paths between any x ∈ X(0) and y ∈ X(2) is even.

Simplicial complexes are chain complexes.
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Number of ways to get from τ ∈ X(i) to σ ∈ X(i+ 2).

- If τ ̸⊂ σ: 0 ways - If τ ⊂ σ: 2 ways

6.2 Boundary expansion in high dimensions

Expansion in complexes

The ‘Cheeger constant’ of a regular graph G is:

ρG ∝ minS⊂V
|E(S, S)|
min(S, S)

Another viewpoint: Edge-boundary scales with distance from {∅, V }:

|E(S, S)| ≥ ρG · dist(S, {∅, V })

Let’s view G as a complex again,

i. |E(S, S)| = |δ1S| (as δ11S(v, w) = 1S(v) ⊕ 1S(w)) ii. dist(S, {∅, V } = dist(1S , Im(δ0))) as

X(0) = ∅.

ii. dist(S, {∅, V }) = dist(1S , Im(δ0)) (as X(0) = ∅).

This suggests the following generalization of Cheeger.

Definition (Coboundary Expansion).

X|FX(0)
2

δ0→ FX(1)
2

δ1→ FX(2)
2

is a ρ-coboundary expander if ∀S ∈ X(1):
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|δ11S | ≥ ρ · dist(1S , Im(∂0))

We can also talk about expansion in reverse direction.

X|FX(0)
2

δT0← FX(1)
2

δT1← FX(2)
2

Complex is a ρ-boundary expander if ∀S ∈ X(1):

|∂T0 1S | ≥ ρ · dist(1S , Im(δT1 ))

Revewing the construction

Recall the XOR construction (now in chain complex form).

How do we pick β given {δ0, δ1}?
- Satisfiable assignments are exactly Im(δ0)

- ‘Global structure‘ given by Ker(δ1) ⊃ Im(δ0)

Choose β ∈ Ker(δ1) \ Im(δ0). β can be found efficiently by Gaussian elimination. Co-cycle but

not co-boundary. β can be found by Gaussian elimination.

Problem

No such β exists! Coboundary expansion is a very very strong property that results in the vanishing

of cohomology. That is, the kernel of δ1 is equal to the image of δ0. That is, there is no way to pick

a function, that is global in some sense, without it being satisfied. This is the major problem with

this approach.

Furthermore, we don’t know any sparse constructions...

We circumvent these issues by relaxing to small sets.

6.3 Small-set HDX are hard for SoS

Definition (Small-set HDX).
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Theorem. Explicit (bounded-degree) small-set HDX exist. [HL22]

- Construction a bit complicated, but come from qLDPC codes [LZ22].

- Worth noting, this implies the NLTS conjecture!

Soundness Proof Sketch
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Completeness Proof Sketch
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Open Problems
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