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NLTS from quantum LDPC codes

According to the No Low-Energy Trivial State (NLTS) conjecture,
originally put forth by Freedman and Hastings, there exist families of
Hamiltonians (which describe the total energy of quantum systems) such
that all their low-energy states have non-trivial complexity. This complexity
is measured by the quantum circuit depth needed to prepare the state.

[ABN] proves this conjecture by showing that certain families of quantum
low-density parity-check (LDPC) codes correspond to NLTS local
Hamiltonians. This means that these quantum codes map to Hamiltonians
that satisfy the conditions laid out in the NLTS conjecture.
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NLTS and quantum PCP

The introduction also relates the NLTS conjecture to the quantum PCP
conjecture, one of the most important open questions in quantum
complexity theory. This conjecture asserts that local Hamiltonians with a
constant fraction promise gap remain QMA-complete, which is the
quantum analog of NP-complete problems.

The paper suggests that proving the NLTS conjecture could shed light on
the validity of the quantum PCP conjecture. However, proving the NLTS
conjecture itself has been challenging in the most general case.
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NLTS from quantum LDPC codes

[ABN] introduces the main result, that there indeed exist such NLTS local
Hamiltonians. The Hamiltonians in question are associated with quantum
LDPC error-correcting codes that have an additional property related to
the clustering of approximate codewords of the underlying classical codes.

Finally, the introduction lists a series of open questions. These are related
to whether the property of clustering approximate codewords holds for all
constant-rate and linear-distance quantum codes, the relationship between
this property and the small-set boundary and co-boundary expansion, and
whether the proof techniques can be generalized for non-commuting
Hamiltonians.
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NLTS from quantum LDPC codes

In simple terms, it has shown that the NLTS conjecture is true. This
conjecture states that for certain families of quantum systems (described
by Hamiltonians), the lower-energy states have high complexity, meaning
they need complex quantum circuits to be prepared.

The breakthrough was proving this conjecture by connecting it to quantum
error-correcting codes. More specifically, they found that families of
quantum low-density parity-check (QLDPC) codes that have constant
rates and linear distances correspond to these Hamiltonians.
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NLTS from quantum LDPC codes

Quantum low-density parity-check (QLDPC) codes are a type of quantum
error-correcting code, which help protect quantum information from errors
due to decoherence and other quantum noise. The fact that these codes
correspond to the Hamiltonians of the NLTS conjecture is a significant
result, as it potentially provides a new way of studying and understanding
these complex quantum systems.

It may also have implications for quantum computing, as understanding
the complexity of low energy states could be important for quantum
algorithm design and error correction. Their work could thus represent a
substantial contribution to the field of quantum information and
computation.
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QMA-complete local Hamiltonian problem and QPCP

The QMA-complete local Hamiltonian problem is presented as a quantum
analogue of the NP-complete constraint satisfaction problem (CSP). In
simpler terms, the challenge of finding the lowest energy state of a
quantum system (the local Hamiltonian problem) mirrors the difficulty of
solving certain classical problems (the constraint satisfaction problem).

The quantum PCP (Probabilistically Checkable Proofs) conjecture is also
highlighted as one of the most important open questions in quantum
complexity theory. It essentially posits that certain problems remain
”hard” (QMA-complete) even when a bit of approximation or ”promise
gap” is allowed. This is analogous to the classical PCP theorem which
established that certain problems remained NP-complete even when
approximations were permitted.
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The relation between NLTS and quantum PCP

The NLTS conjecture proposes that for a given family of local
Hamiltonians (which describe systems of n qubits), any low-energy state
(with energy less than a certain fixed fraction of the total number of
qubits, ϵn) cannot be prepared by a simple (constant depth) quantum
circuit. This essentially means that these low-energy states are complex
and not easily producible, hence the name ”No Low-Energy Trivial States”.

This conjecture is seen as a direct consequence of the quantum PCP
conjecture. This is because if the NLTS conjecture were false, it would
imply that there is a simple quantum solution to a problem that is
expected to be QMA-complete, essentially contradicting the quantum PCP
conjecture. The NLTS conjecture can thus be viewed as addressing the
issue of how much quantum states of local Hamiltonians can be
approximated using classical resources.
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Wait, what is the quantum PCP conjecture?

The classical PCP theorem, a cornerstone of theoretical computer science,
says that for every decision problem solved by a nondeterministic Turing
machine, there is a ”proof” that can be checked probabilistically by
examining a constant number of random positions.

The Quantum PCP Conjecture states that the problem of approximating
the ground state energy of a local Hamiltonian is QMA-complete. Here, a
local Hamiltonian is a simple model for the energy of a quantum system,
where the Hamiltonian (energy operator) is a sum of terms, each of which
involves only a constant number of particles.
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Wait, what is the quantum PCP conjecture?

QMA (Quantum Merlin-Arthur) is the class of problems for which a ”yes”
answer can be proven to a quantum verifier by a quantum proof, whereas
if the answer is ”no” then no quantum proof can convince the verifier
otherwise with high probability. QMA-completeness is an indicator that
the problem is one of the hardest problems in the QMA complexity class,
in the sense that any problem in QMA can be efficiently reduced to it.

Despite evidence both supporting and contradicting the quantum PCP
conjecture, its validity remains undetermined, signifying a major open
problem in quantum information theory. [ABN] contributes to this ongoing
dialogue in the quantum computing and complexity theory community.
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The Key Theorem

Theorem 1 (No low-energy trivial states) [ABN]
There exists a fixed constant ϵ > 0 and an explicit family of O(1)-local
frustration-free commuting Hamiltonians

{
H(n)

}∞
n=1

where

H(n) =
∑m

i=1 h
(n)
i acts on n particles and consists of m = Θ(n) local terms

such that for any family of states {ψn} satisfying tr
(
H(n)ψ

)
< ϵn, the

circuit complexity of the state ψn is at least Ω(log n).
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The Key Theorem

This theorem provides a significant advancement in understanding the
complexity properties of low-energy states in quantum many-body
systems. It is essentially saying that there is a specific family of
Hamiltonians (i.e., quantum mechanical operators representing the energy
of the system), which are local and frustration-free, such that any
low-energy state of these Hamiltonians requires a quantum circuit of a
nontrivial size (measured by the circuit depth) to be generated.
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The Key Theorem

Let’s break down some key terms:

- Local Hamiltonian: These are physical systems where each particle (or
qubit in the case of a quantum computer) interacts only with its nearby
neighbors. Mathematically, these Hamiltonians are sums of terms, each of
which acts nontrivially only on a small number of particles. The
“O(1)-local” here means that the number of particles that each term acts
on is a constant (does not grow with the system size).

- Frustration-free: A system is said to be frustration-free if there is a
global ground state (a state of minimal energy) where each local term in
the Hamiltonian is minimized. In other words, all local interactions can be
simultaneously satisfied.
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The Key Theorem

- Commuting Hamiltonian: This means that all the local terms in the
Hamiltonian commute with each other, i.e., the order in which they are
applied does not matter. This is a special class of Hamiltonians, as not all
quantum systems have this property.

- Circuit complexity: This is a measure of the size of the smallest
quantum circuit (a sequence of quantum gates) that can prepare a given
state from some simple initial state (like all particles in the state 0).
The theorem states that if a state has energy less than ϵn (where ϵ > 0 is
some fixed constant and n is the number of particles), then the complexity
of the state is at least Ω(log n). Here, Ω(log n) means that the complexity
grows at least logarithmically with the system size.
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The Key Theorem

In essence, this theorem asserts the nontriviality of low-energy states in
certain quantum systems, as evidenced by their circuit complexity. Such
states cannot be easily prepared, which is an important consideration in
various fields, including condensed matter physics and quantum
computing. The complexity here is typically measured by the quantum
circuit depth necessary to prepare the state. Quantum circuit depth is a
measure of the computational resources required to implement a quantum
computation: the deeper the circuit, the more complex the computation.

In this context, a ”trivial” state would be one that could be prepared with
a quantum circuit of shallow (i.e., constant) depth, no matter how large
the system is. So, the NLTS conjecture asserts that for the systems it
concerns, all low-energy states require quantum circuits of more than
constant depth – they require ”super-constant” depth, which increases
with the size of the system.
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What are quantum LDPC codes?

A quantum Low-Density Parity-Check (LDPC) code is a type of quantum
error correction code that shares some of the favorable properties of
classical LDPC codes. Quantum codes are used to protect quantum
information from errors due to decoherence and other quantum noise.

LDPC codes, in the classical setting, are a type of error correcting code
characterized by a sparse parity-check matrix. This sparsity leads to
efficient algorithms for error correction. Classical LDPC codes have been
widely used in communication systems due to their capacity-achieving
performance and efficient decoding algorithms.
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What are quantum LDPC codes?

In the quantum setting, a quantum LDPC code is a kind of stabilizer code
where the stabilizer generators involve only a few qubits (they are
”low-density”). These codes are particularly interesting because of their
potential for fault-tolerant quantum computation.

Quantum LDPC codes are not as well-understood as some other types of
quantum error-correcting codes, like the surface code. Nevertheless, there
has been significant interest in them because of their potential for high
error thresholds and efficient decoding, which are important properties for
practical quantum error correction. However, designing quantum LDPC
codes that are both high-rate and have good minimum distance is a
challenging open problem.
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NLTS and quantum LDPC

[ABN] introduces a significant connection between quantum
error-correcting codes, specifically Quantum Low-Density Parity-Check
(QLDPC) codes, and the NLTS (No Low-Energy Trivial States) conjecture.

The robust circuit-lower bounds, which verify the NLTS conjecture, apply
to local Hamiltonians associated with certain quantum codes. Specifically,
the codes in question are constant-rate and linear-distance QLDPC codes,
which are known for their scalability and error-correction capabilities. They
mention that these codes possess an additional property related to the
clustering of approximate codewords in the underlying classical codes.
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The special case of quantum Tanner codes

The specific construction where they have confirmed this property exists is
the Quantum Tanner code, introduced by Leverrier and Zémor in 2022.
While they hypothesize that the property might also hold for other
constructions of constant-rate and linear-distance QLDPC codes, they
have not directly proven this.

The fact that this property of clustering of approximate codewords is
sufficient to confirm the NLTS conjecture is a significant result. It opens
up a new question, namely, whether this property is inherently satisfied by
all constant-rate and linear-distance QLDPC codes. This could potentially
mean that a wide class of quantum codes have a deep connection with the
computational complexity of preparing low-energy states of local
Hamiltonians, and further research is needed to explore this intriguing
prospect.
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A quick review of CSS codes

We describe a formalization of a CSS (Calderbank–Shor–Steane) quantum
error-correcting code with parameters [[n, k , d ]]. Here’s a breakdown:

The CSS code is built from two classical binary error-correcting codes
Cx and Cz, with Cz containing the dual C⊥

x of the other.

Each of these classical codes can be defined as the kernel (null space)
of a sparse binary matrix. Cz corresponds to the matrix Hz with
dimensions mz × n and Cx corresponds to the matrix Hx with
dimensions mx × n.

The rank of Hz is denoted as rz and the rank of Hx is denoted as rx.
These ranks represent the number of linearly independent rows in the
corresponding matrices.
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A quick review of CSS codes

The parameter n in the quantum code corresponds to the total
number of physical qubits, which is the sum of the logical information
k , and the ranks rx and rz. This can be written as n = k + rx + rz.

In a constant-rate, linear-distance code, the logical information k,
distance d , and ranks rx and rz are all proportional to the total
number of qubits, n. This means they scale linearly with the size of
the code. This is expressed as k , d , rx, rz = Ω(n).

For the specific codes considered in their work, they also have the
number of rows in the parity check matrices, mz and mx, scaling
linearly with n. This is expressed as mz,mx = Ω(n).
Overall, we’ve outlined how a CSS code is constructed and
characterized, and defined the parameters and conditions specific to
our study, namely constant-rate, linear-distance codes.
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Distance Measure and Approximate Codewords

We define some important terms related to the error detection capabilities
of CSS quantum codes:

Distance Measure (| · |S): For any subset S ⊂ {0, 1}n, a distance
measure | · |S is defined as |y |S = mins∈S |y + s|, where | · | denotes the
Hamming weight. The Hamming weight is a measure of the number of 1’s
in a binary vector, and |y + s| denotes the Hamming weight of the sum
(performed bitwise modulo 2) of the binary vectors y and s. The distance
measure |y |S therefore represents the minimum Hamming weight (i.e., the
minimum number of 1’s) among all the vectors that can be obtained by
adding y to an element s of the set S .
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Distance Measure and Approximate Codewords

Approximate Codewords (G δ
z and G δ

x): These are the sets of vectors
which violate at most a δ-fraction of checks from the classical codes Cz

and Cx respectively. In other words, G δ
z = {y : |Hzy | ≤ δmz} is the set of

binary vectors y such that the Hamming weight of Hzy is at most δmz,
where Hz is the matrix defining the code Cz and mz is the number of rows
in Hz . This represents the vectors that are ”close” to the code Cz in terms
of the fraction of parity checks that they fail. The set G δ

x is defined
similarly for the code Cx.
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Distance Measure and Approximate Codewords

The paper describes the concept of approximate codewords in the context
of classical codes Cz and Cx. Here’s a breakdown of the key elements:

- G δ
z represents the set of binary vectors that violate at most a δ-fraction

of checks from the classical code Cz. In other words, it consists of vectors
y that satisfy the condition |Hzy | ≤ δmz, where Hz is the matrix defining
the code Cz, and mz is the number of rows in Hz. The matrix Hz is
typically a parity-check matrix associated with Cz. The Hamming weight
of Hzy refers to the number of nonzero elements in the vector resulting
from the matrix-vector multiplication Hzy .
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Distance Measure and Approximate Codewords

- The set G δ
x is defined similarly to G δ

z but corresponds to the classical
code Cx. It consists of binary vectors that violate at most a δ-fraction of
checks from Cx. The condition |Hxy | ≤ δmx is satisfied, where Hx is the
matrix defining Cx, and mx is the number of rows in Hx.

In summary, the sets G δ
z and G δ

x represent the approximate codewords for
the classical codes Cz and Cx, respectively. These sets consist of binary
vectors that violate at most a specified fraction (δ) of the parity checks
associated with the respective codes. The concept of approximate
codewords is useful for evaluating the closeness or proximity of a given
vector to a particular code based on the fraction of failed parity checks.

To put it in a condensed matter physics context, this creates a measure of
”distance” between a state and a set of states and then defines sets of
states that are ”close” to our chosen classical codes Cz and Cx.

Sanchayan Dutta (UC Davis) SoS Lower Bounds, SS-HDX and NLTS June 26, 2023 26 / 97



The NLTS Conjecture The Proof Prerequisites Open Problems SoS Lower Bounds The SS-HDX Recipe

Clustering of Approximate Codewords

This property, known as the Clustering of Approximate Codewords, sets a
crucial requirement for a CSS code to be considered for proving the No
Low-Energy Trivial States (NLTS) conjecture.

1. The first part of the property pertains to vectors y that are close to the
classical code Cz (i.e., y ∈ G δ

z ). It states that such vectors y either have
small distance to the orthogonal complement of the code Cx

(|y |C⊥
x
≤ c1δn), or they have large distance to it (|y |C⊥

x
≥ c2n). In other

words, the vectors that are close to Cz are either also close to C⊥
x , or far

from it, without any intermediate distances. This shows a kind of
dichotomy or ’clustering’ of these vectors with respect to their distance to
C⊥
x .
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Clustering of Approximate Codewords

2. The second part of the property mirrors the first part, but it swaps the
roles of the codes Cz and Cx. It pertains to vectors y that are close to Cx

(i.e., y ∈ G δ
x ), and states that such vectors are either close to C⊥

z , or far
from it, without any intermediate distances.

In sum, the Clustering of Approximate Codewords property states that for
a CSS quantum code, vectors that are close to one of the classical codes
(Cz or Cx) must be either close to or far from the orthogonal complement
of the other classical code, with no in-between cases.
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Tanner codes with spectral expansion

The reference they make to the ”classical Tanner codes with spectral
expansion” refers to a particular type of error-correcting code. Tanner
codes are named after their inventor, Michael Tanner. They are
constructed from smaller ”component” codes using a bipartite graph
called a Tanner graph. When these Tanner codes exhibit spectral
expansion (i.e., the Tanner graph has good expansion properties), they
have certain beneficial properties in terms of their decoding performance
and error-correcting capabilities.

In the context of the Clustering of Approximate Codewords property, it
seems that these Tanner codes with spectral expansion fulfill this property,
as indicated in the cited theorem from the work of [AB22]. The use of
these codes helped to prove the combinatorial version of the No
Low-Energy Trivial States (NLTS) conjecture.

Sanchayan Dutta (UC Davis) SoS Lower Bounds, SS-HDX and NLTS June 26, 2023 29 / 97



The NLTS Conjecture The Proof Prerequisites Open Problems SoS Lower Bounds The SS-HDX Recipe

Tanner codes with spectral expansion

As per the reference to ”Lemma 9 in the Appendix”, it appears that a
more generalized class of classical codes, those with small-set expanding
interaction graphs, also satisfy Property 1. However, instead of using the
distance | · |C⊥

x
, the standard Hamming weight | · | is used.

Finally, they mentioned that the quantum analog of this property, which is
probably related to the construction of quantum error-correcting codes
based on these classical codes, is sufficient for proving the full NLTS
conjecture. This suggests that these specific properties of the classical
codes are crucial in extending the results to the quantum domain and thus
proving the NLTS conjecture.
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What is spectral expansion?

In graph theory, the expansion of a graph is a measure of how well
connected the graph is. Roughly speaking, a graph with good expansion is
one where every subset of vertices is adjacent to a large number of vertices
outside the subset.

Spectral expansion refers to a property of Tanner codes where the
associated Tanner graph exhibits good expansion characteristics. The
Tanner graph is a bipartite graph representing the connectivity between
the component codes in the Tanner code construction. Spectral expansion
is related to the eigenvalues of the adjacency matrix of the Tanner graph.
A Tanner code with spectral expansion has a Tanner graph with
eigenvalues that are sufficiently spread out, leading to improved decoding
performance and error-correcting capabilities.
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What is spectral expansion?

For Tanner codes, the expansion properties of the Tanner graph impact the
error correcting capabilities of the code. When the Tanner graph has good
expansion properties (often quantified by a property called the ”spectral
gap”), the Tanner code has strong error-correcting performance. This is
essentially because good expansion ensures that errors on different vertices
(which correspond to bits in the code) are likely to be ”visible” to a large
number of check nodes, enabling the errors to be detected and corrected.

The spectral expansion property is desirable because it indicates that the
Tanner graph has good connectivity and low density of short cycles, which
can enhance the ability of the code to correct errors. This property is
important in the decoding process and plays a role in the proof of the
combinatorial NLTS conjecture.
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The terminology behind “spectral”?

Yes, ”spectral” in this context does indeed refer to eigenvalues. The
terminology comes from the field of spectral graph theory, which studies
the properties of a graph in relation to the characteristic polynomial,
eigenvalues, and eigenvectors of matrices associated with the graph, such
as its adjacency matrix or Laplacian matrix.

The spectral gap of a graph is the difference between the largest and
second largest eigenvalue of its adjacency matrix or, in some contexts, its
Laplacian matrix. This quantity turns out to be closely related to the
connectivity and expansion properties of the graph. In particular, graphs
with a large spectral gap are well-connected and have good expansion,
which is desirable in the context of error-correcting codes, as it helps with
error detection and correction.
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The terminology behind “spectral”?

“Spectral expansion,” on the other hand, is a measure of how well a graph
expands, i.e., how well-connected it is, as seen through the spectrum
(eigenvalues) of its associated matrices. It’s often quantified using
something called the ”Cheeger constant” or ”isoperimetric number,”
which measures how well-separated the graph is. A graph with high
spectral expansion is one where every subset of nodes has a large number
of connections to the rest of the graph, which is again desirable for the
construction of good error-correcting codes.
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Local Hamiltonians of CSS codes

The described local Hamiltonian is naturally associated with the
aforementioned quantum error-correcting codes and is based on the CSS
(Calderbank–Shor–Steane) construction.

For each row wz in Hz , which corresponds to a stabilizer term Zwz in the
quantum error-correcting code, a Hamiltonian term 1

2 (I− Zwz ) is defined.
Summing up these terms over all rows of Hz , the Hamiltonian Hz is
obtained.

An analogous process is performed for Hx, resulting in the Hamiltonian
Hx. The complete Hamiltonian H is then obtained by adding Hx and Hz.
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Local Hamiltonians of CSS codes

The local terms in the Hamiltonian correspond to the checks of the
classical codes, thus the number of local terms is mx +mz, which scales
linearly with n, the length of the quantum code.

The ground state energy of H is zero, which means that the ground state
is a valid code state in the associated quantum error-correcting code. This
is a typical feature of quantum error-correcting codes, where the ground
state of a Hamiltonian encodes the logical quantum information, and the
excited states correspond to the presence of errors.

NB. The notation Zwz stands for applying the Pauli Z operator to those
qubits for which the corresponding entry in the vector wz is 1.
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A brief review of stabilizer codes

A stabilizer group of a quantum code is a group of tensor products of
Pauli matrices (I , X , Y , and Z ). Each element of this group is called a
stabilizer. A quantum state that is stabilized by all elements of this group
is a codeword (or a code state) of the quantum code.

In the context of a Hamiltonian, each term corresponds to an energy level,
and the total energy of a state is the sum of the energies corresponding to
each term in the Hamiltonian. Now, in a stabilizer Hamiltonian, we
associate each term of the Hamiltonian with a stabilizer of the quantum
code.
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A brief review of stabilizer codes

Consider a specific stabilizer, say S . We would then have a corresponding
Hamiltonian term HS , which is designed to ”penalize” states that are not
stabilized by S . A common way to define this term is as HS = (I − S)/2.
We can verify that this operator has eigenvalues of 0 for states stabilized
by S (since Sψ = ψ for these states) and 1 for states not stabilized by S
(since Sψ = −ψ for these states).

So, the energy contribution of the HS term for a state ψ is 0 if ψ is
stabilized by S , and it’s 1 if ψ is not stabilized by S .
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A brief review of stabilizer codes

When you sum over all these terms for all stabilizers in the stabilizer
group, the resulting Hamiltonian has its lowest energy (often set to zero)
for states that are stabilized by all the stabilizers, i.e., the codewords of the
quantum code. All other states have a higher energy because they violate
one or more stabilizers and thus get ”penalized” with a higher energy.

This way, we create a Hamiltonian whose ground state corresponds to the
code space of the quantum code, and whose excited states correspond to
erroneous states. This is very useful in quantum error correction and
quantum computation as it translates the problem of finding error-free
states into a ground state problem, which is a central problem in quantum
mechanics.
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Question 1: Clustering of Approximate Codewords (CoAC)

Does CoAC ”morally” hold for all constant-rate and linear-distance
quantum codes? This question relates to the generality of Property 1,
which is tied to the clustering of approximate code-words in a CSS
quantum code. It is interesting to explore if this property could be a
characteristic of a broader class of quantum codes, specifically those with
constant-rate and linear-distance.
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Question 2: Connection between CoAC and small-set
(co-)boundary expansion

Is there a connection between CoAC and small-set boundary and
co-boundary expansion? This question hints at a potential bridge
between quantum and classical complexity theory. The referenced work
[HL22] involves the construction of classical Hamiltonians that are
challenging to approximate. It would be intriguing to discover if a classical
analogue to the NLTS property exists, and whether it has any implications
on the quantum PCP conjecture. It also raises the interesting point of the
relationship between local testability and the NLTS property.
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Problem 3: Non-commuting Hamiltonians

Can the proof techniques be generalized to prove non-trivial lower
bounds for non-commuting Hamiltonians? The present proof revolves
around commuting Hamiltonians, i.e., Hamiltonians whose terms pairwise
commute. Commuting Hamiltonians have unique mathematical properties
and have been extensively used in the context of quantum error correction
and topological quantum computing. However, in general, quantum
systems are described by non-commuting Hamiltonians, and therefore it
would be of great interest to generalize these techniques to such
Hamiltonians. This could potentially lead to new insights in the context of
quantum complexity theory and many-body quantum physics.

Exploring these questions could potentially lead to advancements in the
understanding of the complexity of quantum systems and the applicability
of quantum error-correcting codes.
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Sum-of-Squares (SoS) and CSPs

Sum-of-Squares (SoS) semi-definite programming (SDP) is a method used
to approximate solutions for problems called constraint satisfaction
problems (CSPs). These problems require finding a solution that meets a
certain number of constraints or conditions. However, it’s difficult to
determine the structure of problems that are challenging for this SoS
method.
[HL] is discussing the breakthrough that there’s now an explicit group (or
”family”) of highly unsatisfiable CSPs that the SoS method cannot solve.
The breakthrough is important because before this, the most effective
method to find hard instances for SoS was pretty much brute force search,
which is a time-consuming and inefficient method.
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Sum-of-Squares (SoS) and CSPs

The main result or theorem (Theorem 1.1) of this paper claims that there
are specific values and an infinite group of 3-XOR problems (a type of
CSP) that have two key characteristics:
1. No assignment can satisfy more than a certain fraction of the
constraints. This fraction is represented by (1 - µ1) where µ1 is some
constant between 0 and 1.
2. No problem in this group can be refuted by µ2n levels of the SoS SDP
relaxation. Here, µ2 is also a constant between 0 and 1, and n represents
the size or complexity of the problem.
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Sum-of-Squares (SoS) and CSPs

In simpler words, this theorem says that there is a set of very difficult
3-XOR problems that can’t be solved by the SoS method, no matter how
much you increase the complexity or the levels of the method.

Theorem 1.1 also provides the first example of an approximation problem
with short witnesses of unsatisfiability that the Sum-of-Squares proof
system cannot handle. In other words, it gives a problem which the SoS
system fails to solve. This proves that the SoS system isn’t complete or
perfect in its ability to solve all problems, which is a significant discovery
in the field.
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What is the SoS hierarchy?

The Sum-of-Squares (SoS) semi-definite programming (SDP) hierarchy is
an advanced computational tool that is often used to approximate
solutions for constraint satisfaction problems (CSPs). CSPs are a type of
problem in theoretical computer science that involve finding a solution
that satisfies a series of constraints or conditions.

Despite the SoS SDP hierarchy’s power and extensive study, we know very
little about the types of CSPs that are difficult for it to handle. While it
has been known for a while that random instances of CSPs are often
challenging for SoS, there haven’t been many significant advances in
constructing explicitly hard instances for SoS, with the best methods
generally being equivalent to a simple brute force search.
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[HL] leverages recent developments in locally testable codes and quantum
low-density parity-check (qLDPC) codes. With the help of these tools,
they claim to have created the first explicit family (or group) of CSPs that
are very difficult to satisfy (unsatisfiable) and cannot be solved by using a
large number of rounds of SoS, specifically Omega(n) rounds. In
complexity theory, the notation ”Omega(n)” usually refers to lower bound
on the growth rate of a function, indicating that a large, but unspecified,
number of rounds of SoS cannot refute (disprove) these CSPs.
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Theorem 1.1 (Main Result: Explicit 3-XOR Instances Hard
for SoS)

Theorem 1.1 introduces a significant result related to the complexity of
certain problems in the context of the Sum-of-Squares (SoS) semi-definite
programming (SDP) hierarchy. This result concerns 3-XOR instances,
which are a type of constraint satisfaction problem that involve equations
with three variables, all linked by XOR (exclusive or) operations.

The theorem states that there exist constants (µ1 and µ2), both between
0 and 1, and an infinite set of 3-XOR instances that can be built in
deterministic polynomial time. The following conditions apply to these
instances:
1. No possible assignment of values to the variables in a given problem
can satisfy more than a (1− µ1) fraction of the constraints. This means
that no matter how you try to solve these problems, you will always leave
at least µ1 fraction of the constraints unsatisfied.
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Theorem 1.1 (Main Result: Explicit 3-XOR Instances Hard
for SoS)

2. No instance can be disproven (refuted) by using µ@n rounds of the
corresponding Sum-of-Squares SDP relaxation. Here, ”n” refers to the size
of the problem (for example, the number of variables or constraints), and
”relaxation” is a technique often used in optimization problems where a
harder problem is replaced by an easier one that provides an upper or lower
bound. This point implies that these instances are challenging for the SoS
algorithm, as even a substantial number of rounds of the SoS SDP
relaxation fail to refute the instances.
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The Integrality Gap

While Theorem 1.1 reveals an ’integrality gap’ - the difference between the
optimal value of the integer problem and its relaxation - of 1 versus
(1− µ1), this means that the instances can satisfy (1− µ1) of the
constraints but they appear fully satisfiable to the Sum-of-Squares (SoS)
algorithm. This gap can be amplified to (1− ϵ) versus ((1/2) + ϵ) for any
ϵ > 0 when combined with standard PCP (Probabilistically Checkable
Proof)-like reductions in the SoS hierarchy. This essentially matches the
difficulty of random 3-XOR instances, allowing for some degree of
imperfection in the solutions.
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Explicit family of 3-XORs

It’s important to note that Theorem 1.1 introduces the first explicit family
of Constraint Satisfaction Problems (CSPs) that outperform more than
O(log(n)) levels of the SoS hierarchy. This can be achieved through either
unique neighbor expanders, which are a certain type of graph with special
properties, or simply by brute force search, although the latter may come
with some lower-order factors.
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Explicit family of 3-XORs

While there were known examples of explicit constructions that go against
Ω(n) rounds of SoS in the field of proof complexity (e.g., Tseitin formulas,
knapsack), these examples do not lead to inapproximability because their
satisfiability is not bounded away from 1, meaning they can be fully or
almost fully satisfied. The introduced 3-XOR instances, however, exhibit a
bounded away from 1 satisfiability, thus presenting a harder case for the
SoS algorithm.
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Inapproximability

In many cases, we want to understand the limits of approximation
algorithms, that is, we want to show that it’s not possible to approximate
the optimal solution beyond a certain ratio in polynomial time (unless
P=NP). One of the ways this is done is by showing that a problem is hard
to approximate within some ratio for a powerful algorithmic framework like
SoS. If we can show that even the SoS hierarchy can’t approximate the
solution beyond a certain point, it provides evidence that no polynomial
time algorithm can (under standard complexity assumptions).
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Inapproximability

For instance, if you have a problem and you can show that after a certain
number of rounds in the SoS hierarchy, you can’t find a solution that
approximates the optimal solution beyond a certain ratio, then this
provides a lower bound on the inapproximability of that problem. This
means that there is no polynomial time algorithm that can guarantee a
better approximation ratio (unless P=NP).

So in summary, the SoS hierarchy is an algorithmic tool that we use to
solve problems, and inapproximability is a concept that describes how well
we can solve problems. By using SoS as a benchmark, we can gain insights
into the inapproximability of various problems.
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Satisfiability

The satisfiability of a constraint satisfaction problem (CSP) like the 3-XOR
problem refers to the fraction of constraints that can be simultaneously
satisfied by the best possible assignment of values to the variables.

For random 3-XOR instances, the satisfiability is not known exactly but is
understood to be very high under random assignment. A random 3-XOR
problem is generated by picking each constraint (a XOR b XOR c = 0 or
1) uniformly at random from among all possible constraints on three
variables.
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Satisfiability

For a large random 3-XOR problem, a random assignment of the variables
will satisfy, on average, about half the constraints. However, there exist
algorithms that can find assignments satisfying significantly more than half
the constraints in polynomial time.

The fact that it’s challenging to determine the exact satisfiability or find
an assignment that satisfies all constraints is part of what makes random
3-XOR a difficult problem and an interesting benchmark for studying the
limits of approximation algorithms and the complexity of solving CSPs.
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What is Theorem 1.1 doing for us?

At a high level, Theorem 1.1 provides the first example of an
approximation problem with short proofs (or “witnesses”) of
unsatisfiability that the Sum-of-Squares (SoS) proof system cannot handle.
This conclusion negatively settles the question of whether SoS is complete,
meaning capable of handling all problems of this nature, in this context.

Additionally, it’s important to note that the specific choice of a 3-XOR
problem is not particularly special or essential for this result. As pointed
out by earlier research (specifically [DFHT20]), which demonstrated a
similar outcome for O(

√
log(n)) levels of SoS, Theorem 1.1’s approach

can be used to construct hard instances across many types of Constraint
Satisfaction Problems (CSPs). This is achievable through standard
reduction techniques.
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What is Theorem 1.1 doing for us?

These hard instances can include those with the largest possible difference
(or ”integrality gaps”) between the best possible solutions for the exact
and relaxed versions of CSPs. Specifically, this is the case for CSPs with
predicates that are resistant to approximations, based on pairwise
independent subgroups. These predicates are mathematical expressions
that, when true, satisfy the constraints of the CSP.

The “short witnesses of unsatisfiability” mentioned here likely refer to a
concise evidence or proof that a given problem instance cannot be fully
satisfied. The theorem shows that, even when such short witnesses exist,
they cannot always be identified by the SoS proof system. This resolves an
open question about the completeness of SoS for problems of this type,
showing that SoS is not always able to recognize unsatisfiable instances,
even when the proof of unsatisfiability is relatively simple.
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What is Theorem 1.1 doing for us?

The reference to “3-XOR” indicates that this particular constraint
satisfaction problem (CSP) served as a specific example for demonstrating
this limitation of SoS. However, the implications of the theorem extend
beyond just the 3-XOR problem.
As observed in [DFHT20], Theorem 1.1 can be used to construct hard
instances of many types of CSPs using standard reduction techniques.
This includes instances of CSPs with “approximation-resistant predicates
based on pairwise independent subgroups”, which are particularly difficult
problems for approximation algorithms.

The “optimal integrality gaps” phrase refers to a measure of the difference
between the optimal solutions of the integer programming and its
continuous (or ’relaxed’) counterpart. An instance with an ”optimal
integrality gap” is one where this difference is as large as possible, making
it a hard instance for approximation algorithms.
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What is Theorem 1.1 doing for us?

This theorem has far-reaching implications for our understanding of the
limits of approximation algorithms and the SoS proof system in particular.
It provides both a new insight into the capabilities of SoS and a method for
constructing hard instances of a variety of constraint satisfaction problems.
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Approximation-resistant predicates based on pairwise
independent subgroups

In this context, “approximation-resistant predicates based on pairwise
independent subgroups” refers to a specific type of function or condition
used in constraint satisfaction problems (CSPs).
1. A predicate in this context refers to a boolean-valued function or
condition that is applied to a set of variables in a CSP. For example, in a
3-SAT problem, a predicate could be a clause like (x OR NOT y OR z),
which takes the values of x, y, and z and returns either true or false.
2. Approximation-resistant means that it is hard to find an
approximation to the maximum number of predicates that can be satisfied
simultaneously. In other words, even approximation algorithms cannot
significantly outperform simply picking a solution at random.
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Approximation-resistant predicates based on pairwise
independent subgroups

3. In the context of CSPs and predicates, pairwise independent
subgroups likely means that the set of satisfying assignments for the
predicate forms a subgroup (i.e., subfamily) and any two elements picked
from this subgroup are independent.

Taken together, ”approximation-resistant predicates based on pairwise
independent subgroups” likely refers to predicates for which the set of
satisfying assignments forms a pairwise independent subgroup, and finding
an approximation to the maximum number of these predicates that can be
satisfied simultaneously is a hard problem. The specifics of how these
predicates are constructed and used would depend on the problem and the
details of the underlying mathematical framework.
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Small-set High Dimensional Expanders (SS-HDX)

Theorem 1.1 is based on a newly emergent concept of high dimensional
expansion (HDX), a budding field in computer science and mathematics
that has already witnessed numerous significant results in areas such as
coding theory, approximate sampling, approximation algorithms, analysis
of boolean functions, agreement testing, and recently, Sum-of-Squares
lower bounds.

Most of these works consider notions of expansion on hypergraphs, which
are often called simplicial complexes in this context. However, the authors
of this paper draw inspiration from recent advances in Locally Testable
Codes (LTCs) and quantum codes and consider expansion on a more
general class of mathematical structures known as chain complexes.
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Small-set High Dimensional Expanders (SS-HDX)

Here, the symbol “X” represents a chain complex, which is a sequence of
vector spaces or modules connected by homomorphisms. The vector

spaces FX (0)
2 , FX (1)

2 , and FX (2)
2 represent different ”levels” of the chain

complex, and the arrows δ0, δ1, ∂1, and ∂2 represent homomorphisms
(functions that preserve structure) between these spaces.

In the context of this paper, the chain complex is a mathematical
structure that encapsulates the relationships between different
”dimensions” of the problem the authors are studying, and studying the
”expansion” properties of this chain complex can lead to new insights
about the structure of hard instances for the Sum-of-Squares (SoS)
semi-definite programming (SDP) hierarchy.
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Some basic notions from homology and cohomology

The symbols δ0 and δ1 represent linear maps known as the co-boundary
operators, which form the backbone of the mathematical structure of a
cochain complex. These operators map each component (or dimension) of
the complex to the next.

Similarly, ∂1 and ∂2 are the transposes of δ0 and δ1, respectively, and are
called the boundary operators in the context of a chain complex.

The equalities ∂1∂2 = 0 and δ1δ0 = 0 reflect fundamental properties of
chain complexes and cochain complexes, respectively. They state that the
composition of two consecutive boundary operators (or two consecutive
co-boundary operators) is the zero map, which is essential for the concept
of homology (or cohomology) that underpins the topological and algebraic
study of such complexes.
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Small-set High Dimensional Expanders (SS-HDX)

The concept of high-dimensional (co)-boundary expansion, an analogue of
edge expansion in graphs, is introduced in the context of chain complexes.
Edge expansion in graphs is a property that measures how ”quickly” one
can escape a subset of vertices by traversing edges. Similarly,
high-dimensional (co)-boundary expansion in a chain complex measures
the ”expansion” from one dimension to the next in the complex.

An important structural feature of chain complexes is highlighted: any
function f in the image of δ0, known as a co-boundary, satisfies |δ1f | = 0.
In simple terms, this means that applying the co-boundary operator δ1 to a
co-boundary f (i.e., a function in the image of δ0) results in the zero
function. This is analogous to how in a graph, applying the boundary
operator to a boundary (an edge) results in the zero function (no vertices).
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Small-set High Dimensional Expanders (SS-HDX)

A complex is considered a ρ-co-boundary expander when the above
property is the only reason that |δ1f | isn’t larger. This is formalized in the

inequality, which states that for all functions f in FX (1)
2 , the size of the

image of f under δ1 is greater than or equal to ρ times the distance from f
to the image of δ0.

In this definition, the term ”distance” could refer to a measure of how far
the function f is from being a co-boundary (a function in the image of δ0),
perhaps in terms of some norm or another mathematical measure.

In this context, |δ1f | refers to the size, or ”weight”, of the function f after
it has been transformed by the coboundary operator δ1.
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Small-set High Dimensional Expanders (SS-HDX)

The weight of a function in FE
2 , where E is the set of edges, is typically

understood as the number of edges for which the function evaluates to 1.
More formally, given a function f : E → F2, the weight |f | is defined as
the cardinality of the set e ∈ E : f (e) = 1.

In the context of the expression |δ1f |, f is first transformed by the
operator δ1 into a new function, and then the weight of this new function
is calculated.
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Generalizing from graphs to chain complexes

Chain complexes admit a natural analog of boundary (edge) expansion in
graphs called high-dimensional (co)-boundary expansion [LM06]. To see
this, we first note an important inherent structural property of chain
complexes: any function f ∈ im (δ0) (called a co-boundary) satisfies
|δ1f | = 0. A complex is called a ρ-co-boundary expander essentially when
this is the only obstruction to |δ1f | being large:

∀f ∈ FX (1)
2 : |δ1f | ⩾ ρ · d (f , im (δ0)) .
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Generalizing from graphs to chain complexes

The concept of co-boundary expansion is a generalization of the notion of
edge (or boundary) expansion, which originates from the field of graph
theory. It is used in the context of chain complexes, which are
higher-dimensional analogs of graphs. The co-boundary expansion of a
chain complex is a measure of how well the complex expands in high
dimensions.

In simple terms, an edge in a graph separates two sets of vertices.
Analogously, a (higher-dimensional) face in a simplicial complex separates
two (lower-dimensional) chains. The co-boundary of a chain is the set of
all faces that separate the chain from its complement.
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Generalizing from graphs to chain complexes

The co-boundary expansion of a chain complex is then defined in terms of
the size of the co-boundary of every chain. Specifically, the co-boundary
expansion is the minimum over all chains of the ratio of the size of the
co-boundary to the size of the chain itself. The larger the co-boundary
expansion, the better the chain complex is at expanding in high
dimensions.

To make this more concrete, consider a function f that assigns a value to
every element in a certain dimension of the chain complex (for instance,
the vertices in a graph, or the edges in a hypergraph). The co-boundary of
this function f is the set of all elements in the next higher dimension that
are adjacent to an odd number of elements to which f assigns the value 1.
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Generalizing from graphs to chain complexes

Then the co-boundary expansion property essentially says that for every
such function f , the size of the co-boundary (the number of elements in
the co-boundary) is large, unless the function f is itself a co-boundary
(which can be thought of as a trivial or uninteresting case). This is a
measure of how well the elements in the chain complex are interconnected,
which has many important applications, for instance in coding theory and
in complexity theory.
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Generalizing from graphs to chain complexes

The concept of high-dimensional (co)-boundary expansion, an analogue of
edge expansion in graphs, is introduced in the context of chain complexes.
Edge expansion in graphs is a property that measures how ”quickly” one
can escape a subset of vertices by traversing edges. Similarly,
high-dimensional (co)-boundary expansion in a chain complex measures
the ”expansion” from one dimension to the next in the complex.

An important structural feature of chain complexes is highlighted: any
function f in the image of δ0, known as a co-boundary, satisfies |δ1f | = 0.
In simple terms, this means that applying the co-boundary operator δ1 to a
co-boundary f (i.e., a function in the image of δ0) results in the zero
function. This is analogous to how in a graph, applying the boundary
operator to a boundary (an edge) results in the zero function (no vertices).
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Generalizing from graphs to chain complexes

A complex is considered a ρ-co-boundary expander when the above
property is the only reason that |δ1f | isn’t larger. This is formalized in the

inequality, which states that for all functions f in FX (1)
2 , the size of the

image of f under δ1 is greater than or equal to ρ times the distance from f
to the image of δ0.

In this definition, the term ”distance” could refer to a measure of how far
the function f is from being a co-boundary (a function in the image of δ0),
perhaps in terms of some norm or another mathematical measure.

In this context, |δ1f | refers to the size, or ”weight”, of the function f after
it has been transformed by the coboundary operator δ1.
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Generalizing from graphs to chain complexes

The weight of a function in FE
2 , where E is the set of edges, is typically

understood as the number of edges for which the function evaluates to 1.
More formally, given a function f : E → F2, the weight |f | is defined as
the cardinality of the set e ∈ E : f (e) = 1.

In the context of the expression |δ1f |, f is first transformed by the
operator δ1 into a new function, and then the weight of this new function
is calculated.
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Generalizing from graphs to chain complexes

X : F∅
2

δ0
⇄
∂1

FV
2

δ1
⇄
∂2

FE
2

For intuition, it is worth briefly discussing why this generalizes boundary
expansion on graphs. Any graph G = (V ,E ) (or indeed hypergraph, see
Section 4.2) can be written as a chain complex:

X : F∅
2

δ0
⇄
∂1

FV
2

δ1
⇄
∂2

FE
2
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Generalizing from graphs to chain complexes

where δ0f (v) = f (∅), δ1f ((u, v)) = f (u)⊕ f (v), and it is easily checked
that δ1δ0 = 0. Notice that in this setting the only co-boundaries are
im (δ0) = {∅,V }, and furthermore that for any S ⊂ V and e ∈ E , the
value of δ11S on e is 1 iff e crosses the cut defined by S . This implies the
ratio |δ11S |

d(1S ,im(δ0))
= E(S ,V \S)

min{|S |,|V |S |} , which is just the standard boundary
expansion of G !
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Generalizing from graphs to chain complexes

The coboundary operator δ0 is defined to map a function f defined on
vertices to a constant function, i.e., a function defined on the empty set,
which effectively represents the entire graph (since any function defined on
the empty set is essentially a constant). This is somewhat abstract and is
essentially a formalism, but it’s useful in setting up the properties of the
coboundary operators and the overall cochain complex.

The choice of this specific definition allows us to conveniently formulate
certain properties of the graph, like the requirement that δ1δ0 = 0 which
must hold for a cochain complex, and it also leads to the interpretation of
co-boundary expansion that is equivalent to the standard definition of
boundary expansion in graphs.
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Generalizing from graphs to chain complexes

Indeed, it might seem unusual that the coboundary operator δ0 would map
a function f defined on the vertices of a graph to a constant function. But
keep in mind, this is a mathematical abstraction. The choice is made to
meet the requirements of a cochain complex, in which the composition of
two successive boundary or coboundary operators is zero. Specifically, in a
cochain complex, we have δiδi−1 = 0.

To achieve this in our current setup, where we’re working with a graph, we
have δ1 defined on the edges of the graph and δ0 defined on the vertices.
For δ1δ0 to be zero for all inputs, we must have δ0 map every vertex
function to a constant function. This is because δ1 is taking an XOR of
function values on the vertices. If those function values are all the same
(i.e., a constant), then their XOR will always be zero, no matter what
edge we’re considering.
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Generalizing from graphs to chain complexes

Notice that in this setup, the only co-boundaries are im (δ0) = {∅,V }.
Furthermore, for any subset S ⊂ V and any edge e ∈ E , the value of δ11S
on e is 1 if and only if e crosses the ”cut” defined by S . Here, 1S denotes
the indicator function of the set S .

This observation leads to the conclusion that the ratio |δ11S |
d(1S ,im(δ0))

is

equivalent to E(S ,V \S)
min{|S|,|V \S |} , which is simply the standard definition of

boundary expansion in graphs.

In other words, high-dimensional co-boundary expansion in chain
complexes extends the idea of boundary expansion in graphs, allowing us
to study ”expansion” properties in more complex, high-dimensional
structures.
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Generalizing from graphs to chain complexes

The two ratios are essentially measures of how well-connected a set of
vertices S is to the rest of the graph. They are both forms of ”expansion”
of a graph or a set within a graph.

Let’s break it down:

1. |δ11S |
d(1S ,im(δ0))

: This ratio is the number of edges that ”cross” the cut
defined by S , divided by the size of S . In other words, it’s a measure of
how many edges are leaving the set S compared to the size of S . If this
number is large, then S is very well connected to the rest of the graph.

2. E(S ,V \S)
min{|S |,|V \S |} : This ratio is the number of edges between S and the

complement of S (i.e., the rest of the graph), divided by the smaller of the
sizes of S and V \S . This is the standard measure of ”boundary
expansion” in a graph. If this ratio is large, it means that the set S has
many edges connecting it to the rest of the graph compared to its size.
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Generalizing from graphs to chain complexes

Therefore, the two ratios essentially quantify the same property about the
set S – the number of edges connecting S to the rest of the graph relative
to the size of S . They both serve as a measure of ”expansion” in a graph,
where a larger value indicates better connectivity or expansion. The
specific definitions and terms used (like δ1 or d) depend on the
mathematical framework or context, but the essential idea remains the
same.

In the context of this discussion, d(1S , im(δ0)) refers to the ’distance’
between the characteristic function of the set S (denoted as 1S) and the
image of the co-boundary operator δ0. The exact nature of this ’distance’
might vary depending on the particular mathematical setting, but it’s
often defined in terms of some norm or metric on the function space that
the chain complex lives in.

On the other hand, min{|S |, |V \S |} is simply the smaller of the sizes of
the set S and its complement in the vertex set V .
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Generalizing from graphs to chain complexes

To see why these two quantities might be related, consider what they
represent. d(1S , im(δ0)) captures some notion of how ’far’ the function 1S
is from being a co-boundary – in other words, how far it is from being a
function that could be expressed as the ’boundary’ of some
higher-dimensional object in the chain complex. When S is a subset of V
that’s approximately half the size of V , this ’distance’ might intuitively be
expected to be large, because such a function 1S won’t have much of a
higher-dimensional ’structure’ to it – it’s just splitting the vertices into two
roughly equal-sized groups.

Similarly, min{|S |, |V \S |} is a measure of how balanced the cut defined by
S is. When this quantity is small, the cut is very imbalanced – one side of
the cut has much fewer vertices than the other.

Sanchayan Dutta (UC Davis) SoS Lower Bounds, SS-HDX and NLTS June 26, 2023 83 / 97



The NLTS Conjecture The Proof Prerequisites Open Problems SoS Lower Bounds The SS-HDX Recipe

Generalizing from graphs to chain complexes

Therefore, both quantities capture, in different ways, some measure of how
’imbalanced’ or ’structureless’ the cut defined by S is. They are not
equivalent, and their relationship could be complex and depend on the
specifics of the chain complex and the operators δ0 and δ1, but they both
serve to quantify certain aspects of the ’quality’ of the cut defined by S in
the graph.
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The notion of small-set boundary expander

Unfortunately, while standard boundary expansion on (random) graphs has
been quite useful for proving SoS lower bounds in the past [BSW99,
Gri01b, Sch08], high dimensional co-boundary expansion seems to be too
strong a notion for this setting: good (co)-boundary expanders are not
known to exist (even probabilistically), and their structure is prohibitively
restrictive in other senses as well 2 We avoid these issues by introducing a
simple relaxation of boundary expansion to small-sets:
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Definition 1.2 (Small-set (Co)-Boundary Expansion). We call X a
(ρ1, ρ2)-small-set boundary expander if the weight of any ’small’ function

f ∈ FX (1)
2 satisfying |f | ⩽ ρ1|X (1)| expands:

|∂1f | ⩾ ρ2 · d (f , im (∂2))
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The notion of small-set boundary expander

This passage introduces a relaxation of the (co)-boundary expansion
property for a chain complex X . This relaxation is designed to focus on
”small” functions, overcoming the challenges that arise from the fact that
good (co)-boundary expanders seem to be hard to find and their structures
tend to be overly restrictive.
In particular, Definition 1.2 is given for a Small-set (Co)-Boundary
Expander:
We say that the chain complex X is a (ρ1, ρ2)-small-set boundary
expander if the following property holds: for any ’small’ function

f ∈ FX (1)
2 , where ’small’ means that the function satisfies |f | ⩽ ρ1|X (1)|,

the weight of the function expands under the boundary operator ∂1.
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The notion of small-set boundary expander

Mathematically, this property can be expressed as:

|∂1f | ⩾ ρ2 · d (f , im (∂2))

This essentially means that the weight (or ”size”) of the transformed
function ∂1f is at least a ρ2 fraction of the distance from f to the image
of the boundary operator ∂2.
In practical terms, this property is checking how much the weight (or
”size”) of a small function can be expanded by the action of the boundary
operator ∂1. This concept is useful for designing and analyzing algorithms,
especially in contexts such as constraint satisfaction problems where the
ability to expand small sets is a valuable property.
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The notion of small-set boundary expander

When we talk about a ”small-set” in this context, we’re referring to a
function f that assigns a value to a relatively small number of elements in
the chain complex. In other words, f is non-zero on a small number of
elements.

Now, the ”co-boundary” of such a function f is the set of all elements in
the next higher dimension that are adjacent to an odd number of elements
for which f is non-zero.

The concept of ”expansion” then refers to the size of the co-boundary of
f . If the co-boundary is large (i.e., there are many higher-dimensional
elements adjacent to an odd number of elements where f is non-zero),
then we say that f expands.
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The notion of small-set boundary expander

So, the property of small-set co-boundary expansion essentially means that
for every function f that is non-zero on a small number of elements, the
co-boundary of f is large, unless f is a co-boundary itself.
In simpler terms, it’s a measure of how interconnected or ”expanded” the
elements in a complex are, even when we’re only looking at a small subset
of those elements. It’s a particularly useful concept in the study of the
efficiency of certain algorithms, and it has applications in fields like coding
theory and computational complexity theory.
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Small-set coboundary expander

Similarly, X is a (ρ1, ρ2)-small-set co-boundary expander if all f ∈ FX (1)
2

s.t. |f | ⩽ ρ1|X (1)| satisfy:

|δ1f | ⩾ ρ2 · d (f , im (δ0))

We call X a (ρ1, ρ2)-small-set HDX (SS − HDX ) if it satisfies both the
above conditions.
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Small-set coboundary expander

This passage defines the concept of a Small-set Co-Boundary Expander
and a Small-Set High Dimensional Expander (SS-HDX).
A chain complex X is referred to as a (ρ1, ρ2)-small-set co-boundary

expander if it fulfills the following condition: For all functions f ∈ FX (1)
2

with |f | ⩽ ρ1|X (1)| (i.e., the function f is small), the size of the function
f expands under the action of the co-boundary operator δ1:

|δ1f | ⩾ ρ2 · d (f , im (δ0))

This condition means that the weight of the transformed function δ1f is at
least a ρ2 fraction of the distance from f to the image of the co-boundary
operator δ0.
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The definition of SS-HDX

Then, the chain complex X is called a (ρ1, ρ2)-small-set high dimensional
expander (SS-HDX) if it satisfies both of the above conditions, meaning it
is both a small-set boundary expander and a small-set co-boundary
expander. In other words, a SS-HDX has the property that all small sets
are expanded when acted on by both the boundary and the co-boundary
operators. This generalization of the expansion property to
high-dimensional settings provides a powerful tool in the study of
theoretical computer science problems.
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Constructing an infinite family of SS-HDX

We saw small-set (co)-boundary expansion on high dimensional expanders
(SS-HDX) is a generalization of small-set expansion in graphs. The
concept of small-set expansion in graphs is critical to several problems in
the hardness of approximation, especially in relation to Khot’s unique
games conjecture. The paper demonstrates in the next section how
SS-HDX can naturally lead to hard instances of XOR for the
Sum-of-Squares hierarchy, providing the first link between the hardness of
approximation and high dimensional small-set expanders.
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Constructing an infinite family of SS-HDX

The main result, Theorem 1.1, therefore focuses on constructing an
infinite family of SS-HDXs with a growing number of vertices that can be
constructed in deterministic polynomial time. While this may seem overly
ambitious, this has recently been achieved in some form in the
breakthrough constructions of quantum Low-Density Parity-Check
(qLDPC) codes. More specifically, the authors claim that the recent
qLDPC codes proposed by Leverrier and Zémor already demonstrate the
properties of small-set HDX, indicating that it may be possible to achieve
the requirements laid out in Theorem 1.1.
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Constructing an infinite family of SS-HDX

Following that, Theorem 1.3 is introduced, which states that there exist
constants ρ1, ρ2 ∈ (0, 1) and an explicit (constructable in polynomial time)
infinite family of bounded-degree (3-term) chain complexes {Xi}. These
complexes satisfy two conditions:

1. Xi has non-trivial ’co-homology’, that is, the image of δ0 is not equal to
the kernel of δ1.

2. Xi is a (ρ1, ρ2)-SS-HDX, i.e., a small-set high-dimensional expander
with parameters ρ1 and ρ2.

This theorem appears to provide the key to constructing the required
instances mentioned in Theorem 1.1.
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Connection to quantum locally testable codes

The paper indicates that the conditions given in Theorem 1.3 are stronger
than those initially established by Leverrier and Zémor [LZ22]. This
theorem demonstrates the most potent known form of bidirectional
high-dimensional expansion to this day.

Moreover, the expansion is so robust that if one could discard the small-set
requirement or demonstrate similar bounds for a 5-term chain complex, it
would solve the qLTC (quantum Locally Testable Code) conjecture, a
significant open question in the field of quantum computation. This
conjecture [KKL14, EH17, LH22a] is about the existence of quantum
error-correcting codes that are locally testable, which is a critical issue in
developing robust quantum computers.
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