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1 Lecture 1 (4 March, 2023)

1.1 Bosons and Fermions

Precept: Certain families of particles are entirely identical, e.g., all electrons are identical. Meaning

that if you switch the state of two electrons (say) or two photons, etc. you should get the exact

same state.

So: If you have n identical particles, there is an action of Sn, the symmetric group, and totally

identical means that Sn acts by a 1-dimension representation.

If every permutation sigma acts by a factor of 1, the particles are identical bosons. If every sigma

acts by (−1)σ, the particles are identical fermions.

You could call these semi-identical particles. This can happen, but you don’t want just one

representation for each n separately. Whatever those axioms are, there are other solutions, but they

are all either parabosons or parafermions that can be re-described as ordinary bosons and fermions,

together with extra hidden internal state.

Example: Quarks. Now seen as fermions, they are in effect semi-identical because they have a

hidden 3-dimensional color Hilbert space.

If H is the Hilbert space for one boson, and respectively, fermion, then the Hilbert space for n

bosons is Sn(H), and for n fermions it is Λn(H), not H⊗n in either case.

If particles are localized in space, then it’s more interesting to consider physical permutations of

them, rather than simply relabelling. Say that we work in d+ 1 dimensions. If d is at least three,

then π1(n distinct points in R3) = Sn. If d = 2, then π1(n distinct points in R3) = Bn (the braid

group), which is bigger and different from Sn, although it surjects to Sn.

1.2 Parastatistics theorem and implications

Instead of Sn, we want representations of Bn instead. Even if the n particles in 2D are mani-

festly different, you will still get an interesting braiding group, the pure braid group PBn : =

The kernel of the homomorphism from Bn to Sn. There is no counterpart to the parastatistics

theorem in this case.

What was first considered: Consistent families of 1-dimensional irreps of Bn. Switching two

particles, say counterclockwise, can produce any phase factor eiθ, not necessarily ±1. Particles like

this are then called anyons. Actually, only roots of unity occur, for later mathematical reasons.

Since there is no parastatistics theorem in 2 + 1-dimensions (with braid groups), higher semi-

identical anyons have to be examined too. These are called non-abelian anyons because the braid

groups acts by matrices that in general don’t commute.

Consistency across particle # is best discussed in terms of fusion.

Generalizing the fusion rules in d ≥ 3:

1. Boson + Boson = Fermion.

2. Boson + Fermion = Fermion.

3. Fermion + Fermion = Boson.

The topological part of a spacetime diagram of some anyons in a given physical system that

can braid, fuse, annihilate, and un-annihilate, will in general be a tensor network – like a Feynman

diagram – except tangled in R3.

A category that supports such tensor networks is called a ribbon category. A ribbon category is

an object in quantum algebra, and even a single closed loop is a very interesting type of “tensor”
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network in this case, because it’s a knot! Ribbon categories are an important explanation of, e.g.,

the Jones polynomial.

For anyons, certainly, the ribbon category must be unitary. Moreover, (for reasons...), there are

only finitely many irreducible objects in a relevant ribbon category. Also, there is a non-singularity

condition, so that you can expect anyons to be modelled by unitary modular tensor categories.

1. Anyon braiding can be useful or even universal for quantum computing. Example: Fibonacci

anyons are known to produce braid group representations that are dense in Fibonacci-dimensional

Hilbert spaces.

2. Kitaev defined surface codes, of multi-Pauli stabilizer type, and observed that point error

syndromes behave as abelian anyons.

1.3 Fundamental Group of Configuration Space

Let X be a ”nice” topological space (say, a manifold). Define Fn(X) to be the subspace of Xn

comprised of tuples with distinct coordinates. The symmetric group Sn acts on it freely, and we

can form the n-configuration space as the quotient SFn(X) : = Fn(X)/Sn. Then we define the

braid group as Bn(X) = π1(SFn(X)). (Of course, SFn(X) should be path-connected...)

If you take X = R then the connected components of Fn(X) are blocks for the action of Sn.

Given any two tuples (x1, · · · , xn) and (y1, · · · , yn) with x1 < x2 < · · · < xn and y1 < y2 < · · · < yn,

these two tuples will be path-connected: first shift all coordinates of y⃗ uniformly enough to the

right so that xn < y1, then shift y1 back until it’s x1, then shift y2 back until it’s y2, and so on.

The space of all tuples (x1, · · · , xn) with increasing coordinates is homeomorphic to Rn which is

simply connected. Similarly for any other tuples whose coordinates are ”ranked” in a given order.

Now consider X = C with n = 2. We must delete the subspace {(z, z) : z ∈ C} from C2. (Keep

in mind for now that C2 acts on the carved-out space by transposing coordinates.) This subspace

is a plane inside Euclidean 4-space, so it homeomorphic to R× (R3 − L) for a line L ⊂ R3. Better

yet, consider the obvious Euclidean structure on the space and take the orthogonal complement

{(z,−z) : z ∈ C}: there is an orthogonal projector given by (z, w) 7→ (z−w,w− z)/
√
2 and then an

isomorphism into the punctured plane given by (u,−u) 7→ u. Thus, we have a deformation retract

from C2 − diag onto C×, and we know π1(C×) is infinite cyclic. (This is the pure braid group P2.)

So what about n > 2? In configuration space (which has 2n real dimensions, so is hard to

visualize) a single point, a ”configuration,” represents n distinct points in a plane (which is easy to

visualize). And a path in configuration space represents each of the n points in the plane having a

path in and out of it.
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Thus, imagine a continuum (indexed by [0, 1]) of copies of C (resting flat) piled on top of each

other. If one lets the altitude represent time, then the paths traced out between the points represent

strings, and if one looks at this picture from the side one sees braid diagrams!

Since we can choose our basepoint for π1 to be anything, without loss of generality we may

assume it is {1, 2, · · · , n} ⊂ C for the purpose of visualization. Tuples in Cn with nondistinct

coordinates represent two strings intersecting at the same point, which is why we must delete this

subspace from Cn: to prevent collisions.

A path in Cn ending where it started means each colored string above would have to go back to

its original point, and this defines a pure braid. If we quotient by the action of Sn, we essentially

allow the path in configuration space to go to any of the permuted configurations, which means the

strings in the braid diagram can connect different dots.
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2.1 Monoidal Tensor Categories

A category is a “class” of objects, and (at least) a set of morphisms Hom(A,B) for every two objects,

with associative composition and an identity in each End(A) = Hom(A,A).

If the class of objects is merely a set, the category C is called “small”. These categories of

interest for us may as well be small.

Compositions in a category are “linear words”. f ◦ g ◦h or just fgh means f(g(h(x))), so h then

g then f .

Goal: To enrich a category to make the allowed words graphs rather than linear words. These

graphs can be called tensor networks.

Easiest case is planar, acylic tensor networks that flow from left to right (say), or top to bottom.

This is what a monoidal category achieves. The idea is to make a multiplication law on objects

as morphism with suitable axioms. If A and B are objects, so A ⊗ B (new operation, not a

universal property). If f and g are morphisms, so is f ⊗ g. You may assume axioms so that

f : A ⊗ B ⊗ · · · → X ⊗ Y ⊗ · · · can be a vertex in an acyclic tensor network that then has a

well-defined value as a morphism. There is also a unit object I s.t. I ⊗A = A.

Why planar? Because no prior relationship between A⊗B and B ⊗A.

An important example: The category of vector spaces with ”⊗” is the usual tensor product.

Even the simplest thing, a just plain monoidal category, has “fusion” or bundling of edges.

A monoidal (or tensor) category is *symmetric* means that there is a distinguished switching

isomorphism s : A⊗ B → B ⊗ A for every A and B, with various axioms to make it do what you

want. sAB and sBA should be inverses, and more subtly

(A⊗B)⊗ C → C ⊗ (A⊗B)

should do the same thing as A⊗B ⊗ C → A⊗ C ⊗B → C ⊗A⊗B.

Example: Again, vector spaces.

A victory: You can always interpret tensor networks as circuits in the sense of computer science.

The three most popular models of computers – deterministic, randomized and quantum – are all

expressible with symmetric tensor categories.
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For deterministic computation, the category is set (finite sets) and functions, and ⊗ = ×. For

randomized computation, the objects are finite sets, the morphisms are stochastic maps and ⊗ = ⊗
for the map.

For quantum computation, the objects are finite-dimensional Hilbert spaces (or sums of matrix

algebras) and the morphisms are TPCPs.

2.2 ⊗ category Vect of vector spaces

Take graded (or at least Z/2-graded) vector spaces. Then V ⊗W is also naturally graded (or binary

graded) and that is a very similar category to Vect. Now there is an alternating switching map that

is just as good as the normal one.

(v ⊗ w) → (−1)(deg v)(degw)w ⊗ v

(Binary graded is better actually.) Then you get a new category, SVect, super vector spaces.

The commutativity law has a cross, so that supercommutative algebras are more general than

commutative algebras.

Example: A poly algebra F{a1, a2, . . . , an} where the generators anticommute is supercommu-

tative if the generators are odd-graded.

2.3 Braid Tensor Category

The Jacobi identity for a Lie algebra (and the asymmetry [x, y] = −[y, x]) has crossings. So you

can define a Lie superalgebra, and it’s more general than a Lie algebra.

A symmetric tensor category has a subtle generalization, called braid tensor category. We assume

two switching isomorphisms from A ⊗ B → B ⊗ A, not just one, left and right half twist. The

consistency axioms can be adapted to this.

End result: Valid tensor networks can but don’t have to be planar. If they’re not planar, they

are tangled in R3. So far they still have to be left-to-right acyclic.



8 2. Lecture 2 (13 March, 2023)

Symmetric monoidal is a degenerate special case of braided monoidal.

Left (half) twist from A⊗B to B ⊗A is inverse to the right half twist from B ⊗A to A⊗B.

Sometimes, but not always, a braid tensor category is perfectly happy to be a subcategory of

Vect (or often vect, just finite dimensional vector spaces) except with a variant ⊗.

If G is a group and F is a field (C), then there is a category rep(G) of finite dimensional

representations. In fact, a symmetric ⊗ category (and ultimately a subcategory of vect). If V and

W are two representations of G, then (1) Hom(V,W ) is just the G-linear maps. (2) V ⊗W needs

an action of G, not G×G. For a group, you use the diagonal action g(v ⊗ w) : gv ⊗ gw.

If L is a Lie algebra, there is a similar construction of Rep(L), except:

a(v ⊗ w) : = (av)⊗ w + v ⊗ (aw)

rep(G) and rep(L) are in fact symmetric monoidal subcategories of vect.

An amazing discovery: If G is a complex simple (or compact simple) Lie group, then rep(G)

which is symmetric monoidal, has a braided monoidal deformation. repq(G) where q is a complex

number and q = 1 is the starting “classical” case. rep(G) = rep1(G). You can work over C[q, q−1]

or you can let q be non-zero in C. You can actually keep “⊗” the same, morally it moves too, but

certainly sAB get deformed, so that sAA no longer has order 2.

sAB is the usual switching map with an adjustment called and R-matrix which is actually a

4-index tensor. You can flatten a native tensor network in repq(G) into a planar tensor network in

vect, but you have to replace each crossing by R or R−1 composed with the usual switching map.

The most popular way to set this up is to work at the Lie algebra level, and replace U(L) by a

deformed algebra Uq(L), which is officially called a “quantum group”.

There is a universal R is some version of Uq(L)⊗ Uq(L).

If L is a Lie algebra, it has a fellow travelling associative algebra, the universal enveloping algebra,

given by reinterpreting z = [x, y] as z = xy− yx. Theorem: (PBW) U(L) is a deformed polynomial

algebra. If L is abelian so that [x, y] = 0 always, then U(L) is exactly the algebra of polynomials

in dimL variables.

The Jones polynomial of a knot can be realized as the value of a tensor network in repq(SL(2,C))
or repq(sl(2,C)) or repq(SU(2)), where the network is just K itself labeled by the 2-dimensional

representation of sl2(2,C), etc.
repq(G) or repq(L) both live as monoidal subcategories of vect, only changing the crossing maps

sAB. So, the objects all still have integer dimensions which multiply when you tensor, and add

when you take direct sums. Whatever you get, it can’t be the Fibonacci category, which has an

object F where

F ⊗ F = F ⊕ I implies that dim Inv(F⊗n) is a Fibonacci number.

However, close. repq(SU(2)), when q is a 5th root of unity, develops an ideal as a linear tensor

category. You can quotient repq(SU(2)) by its ideal, which then destroys its chance to live in vect,

but the Fibonacci category lives inside of it afterward.

The formulation, where you (1) deform rep(G) into repq(G), (2) let q be a root of unity, and (3)

quotient by the negligible ideal. This is an important source of fusion and modular tensor categories.
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