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Part I: Homology and Cohomology
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Simplicial Complex

Figure: Robert Ghrist’s Elementary Applied Topology, Chapter 4.

A simplex is a generalization of the notion of triangles to arbitrary
dimensions. In the above image, think of the vertices of the triangles as
”0-simplices” or ”0-cells”. The edges of the triangles as ”1-simplices” or
”1-cells”. And the body of the solid triangle is a ”2-simplex” or a ”2-cell”.
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The idea is that we have a vector space called a 0-chain C0 whose basis
elements are the 0-cells. A vector called 1-chain C1 whose basis elements
are the 1-cells. And a vector space called 2-chain C2 whose basis elements
are 2-cells. You can generalize this to higher dimensions.

Let’s restrict the scalars of our vector spaces to be F2 = Z/2 = {0, 1} for
now, but we can also take any general field.
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With this kind of construction we have a chain complex (C•, d•) of vector
spaces and linear maps over some field F :

· · · dk+1→ Ck
dk→ Ck−1

dk−1→ · · · d2→ C1
d0→ 0

What do the maps di mean? Well, they are called boundary maps. In the
previous example, d0 maps any 1-cell to its two boundary 0-cells, i.e., an
edge to the sum of its two vertices. d1 maps any 2-cell to its three
boundary 1-cells, i.e., the solid triangle to the sum of its three edges.
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You can check that the boundary of a boundary is zero, meaning that if
you take the solid triangle and map it to the sum of its three edges
e1 + e2 + e3 and then map each edge to the sum of its vertices, then you
get (v1 + v2) + (v2 + v3) + (v3 + v1) which is zero since each vertex occurs
twice in the sum and we know that in F2 that 2 ≡ 0.

Sanchayan Dutta Introduction to Homological Codes 2 November, 2022 7 / 55



An important definition arises at this point: The k-th homology group of
(C•, d•) is defined to be the quotient vector space Hk(C•, d•) =

ker(dk )
im(dk+1)

.
The mnemonic here is “homology is cycles modulo boundaries”.

This definition might look scary at first but it’s really not. Let’s quickly
dive into an example.
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Figure: Images are from Vidit Nanda’s lecture note on Homology.

The above picture shows the triangulation of a surface. You should be
able to identify the 0-cells, 1-cells and the 2-cells. In the left picture, we
can have a sum of edges that form a cycle γ, in the sense that if you add
up all their vertices you’ll get 0 since each vertex occurs twice.

In the right picture, we also have a sum of edges that form a cycle γ′, but
we notice that the two cycles γ and γ′ only differ by the boundary of a
2-cell (solid triangle) which has been shaded in orange.
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So both the cycles γ and γ′ were elements of ker(d1) and differ by an
element of im(d2). That that’s point of homology: γ and γ′ lie in the
same homology class H1(C•, d•), because they are elements of ker(d1) that
differ merely by an element of im(d2). See, that was easier than expected!
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Let’s move on to the other scary-sounding creature cohomology. What’s
that? The idea is that we can dualize our vector spaces in C• and also
dualize all the linear maps d• in between them, to get the cochain complex
(C •, d•). The arrows will certainly be reversed.

0 → C 0 d0

→ C 1 d1

→ C 2 d2

→ · · · d
k−1

→ C k dk

→ C k+1 dk+1

→ · · ·

where each C k = C ∗
k and dk = d∗

k+1. d
k is the kth coboundary map

which is the (conjugate) transpose of dk+1. You should recall the notions
of dual vector spaces and dual linear maps at this point.
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The formal definition of the k-th cohomology group (C •, d•) is the

quotient vector space Hk(C •, d•) = ker(dk )
im(dk−1)

. The new mnemonic for this

is “cohomology is cocycles module coboundaries”.

The important point here is that to every basis element of the vector
space Ck there is a uniquely associated basis element of the dual vector
space C k that eats it and produces 1 ∈ F2. We know this from elementary
linear algebra!

So you imagine the basis elements of C k as being ”dual” k-cells or in fact,
if you’re trying to visualize them then you can think of them as our usual
k-cells. Let’s jump to an example again.
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We need to be vigilant here. In the left diagram, you can notice a set of
edges shaded with dark blue. You can consider these to be your ”dual”
1-cells. The linear map d2 sends each ”dual” 1-cell to its neighboring
”dual” 2-cells, i.e., the light blue shaded triangles that share the ”dual”
1-cell as an edge.
If you add up the neighboring ”dual” 2-cells for each of the dark blue
edges you’ll get a sum total of 0, because each light blue triangle will
occur twice in such a sum. Thus, the sum of these dark blue edges γ is a
1-cocycle as its coboundary is 0.

Sanchayan Dutta Introduction to Homological Codes 2 November, 2022 13 / 55



The vertices here are your ”dual” 0-cells and the map d1 sends each
vertex to its neighboring edges, i.e., the ”dual” 1-cells. In the right
diagram, notice the vertex in red, with 6 ”dual” 1-cells incident at it. This
is the coboundary of that vertex and the sum of those edges is an element
of im(d0).

Like previously, the sum of the dark blue edges is an element of ker(d1),
i.e., a 1-cocycle γ′. The 1-cocycles γ and γ′ clearly only differ by an
element of im(d0), which is a 1-coboundary, and hence these 1-cocycles
are elements of the same cohomology class H1(C •, d•). That’s all there is
to this example.
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You might wonder why the coboundary map takes an i-cell to the
i + 1-cells incident at it. This can be easily shown if we think about
i-cochains as functionals that ”eat” and assign values to i-chains.

This deserves a good and elaborate explanation, but for now, I’ll leave you
with this brief excerpt from Robert Ghrist’s amazing book, which if you
unwrap will give you the full mental picture. In short, recall that given a
linear map φ : V → W , the dual map φ∗ : W ∗ → V ∗ maps γ 7→ φ ◦ γ,
which on each i + 1-cell assigns a value based on the formal linear sum of
the boundary i-cells (with sign).
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Part II: Homological Codes and the Special Case of Toric
Codes
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Homological Codes: The Special Case of Toric Codes

Figure: Image from Nikolas Breuckmann’s 2018 Ph.D. thesis.

We recall the definitions of the boundary map δi : Ci → Ci−1 and the
coboundary map ∂i : Ci → Ci+1. Writing δi and ∂i down as matrices in a
few small examples should also make it clear that ∂i = δTi+1. The i-cycles
are Zi = ker ∂i and the i-boundaries are Bi = im ∂i+1. Since ∂i ◦ ∂i+1 = 0
it follows that Bi ⊆ Zi , meaning all i-boundaries are necessarily i-cycles.
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There may however be i-cycles that are not boundaries of i+1-chains,
called essential cycles. For instance, consider any 1-cycle that surrounds
any one of the two 1-dimensional holes of a torus. Essential cycles are
considered equivalent if they differ by a boundary.
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The first homology group of a torus T2 over Z/2 is given by
H1(T2) = Z/2⊕ Z/2. You might wonder what the third non-trivial
homology class represents, besides the two essential cycles shown above.
It’s actually equivalent to an essential 1-cycle along the diagonal direction
of a rectangle whose opposite edges were identified to form the torus. It
looks like this:

Figure: The One That Got Away from What is the Homology of a Torus?
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Figure: The Hole Truth from Quanta Magazine
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Handle Decomposition: Cores and Co-Cores

Topology is preserved when switching between core and co-core. We can
think of the rectangle as either a fattened core or a fattened co-core.
Likewise, we can think of the cylinder either as a fattened disc or as a
fattened line.
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Dual Cellulation and Poincaré Duality

This intuition is that the i-cells of a cell complex X correspond to the
D − i cells of the dual cell complex X ∗. By linear extension, this gives rise
to an isomorphism ∗ : Ci (X ) → CD−1(X

∗). It’s also at least intuitively
clear that transitioning to the dual chain leaves the inner product
(evenness or oddness) invariant, although does require formal proof.

⟨a, b⟩Ci
= ⟨∗a, ∗b⟩C∗

D−i
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If we work through the definitions then we will also have that applying the
coboundary operator to a chain of a cell complex is equivalent to going to
the dual complex and applying the boundary operator of the
complementary dimension.

δi = ∗−1 ◦ ∂D−i ◦ ∗

Sanchayan Dutta Introduction to Homological Codes 2 November, 2022 24 / 55



Toric Code from Cell Complex

Disclaimer: I claim that this construction will fall out of the sky. But I
also claim that in hindsight the construction will be “obvious”.

To turn a cell complex X into a “stabilizer code” we can pick a dimension
i ∈ {1, . . . ,D − 1} and identity all i-cells with qubits. The boundaries of
the i + 1-cells are used to define Z -checks and the coboundaries of the
i − 1-cells are used to define X -checks.
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Like in the following picture for the toric code:

Actually, let’s take a short break from here and discuss Fourier transforms.
We’ll be right back.
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Part III: A Brief Digression on Fourier Dualities
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Fourier Transforms in Terms of Basis Expansions

I’m sure all of you have seen the following in one of its many incarnations:

Let R be the line parameterized by x . Let f be a complex function on R
that is integrable. The Fourier transform f̂ = Ff is

f̂ (k) =

∫ +∞

−∞
e−ikx f (x)dx .

Which I interpret as the projection of f (x) onto the basis of exponential
functions e−ikx , i.e., (f , ek) and f = (f , ek)ek .

One thing to look is what happens when you scale x by a factor. You’ll
find that you have to scale the Fourier variable k by the inverse factor.
That means k lives in a vector space that is dual to the real line x lives in.
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Multi-Dimensional Fourier Transform

Now how would we define the Fourier transform for a function on a
finite-dimensional vector space V ? What replaces that kx in the e ikx

factor in the Fourier transform?

The answer is that in order to write a meaningful operation down without
choosing any additional structure we must take e i⟨k,x⟩ where ⟨k , x⟩ is the
dual pairing between k ∈ V ∗ and k ∈ V . We’ll end up getting a
generalization of the single-dimensional Fourier transform and we can also
see the effect on k upon applying a linear transformation to x .

Sanchayan Dutta Introduction to Homological Codes 2 November, 2022 29 / 55



Examples of Fourier-style dualities

Polar Dual of a Convex Body:
If K is a convex body, then K ∗ = {y : ⟨y, x⟩ ≤ 1,∀x ∈ K}
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Examples of Fourier-style dualities

Reciprocal Lattice:
If L is a lattice, then L∗ = {u, ∀v ∈ L, ⟨u, v⟩ ∈ Z}. If B is a basis for L,
then (B−1)T is a basis for L∗.
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Pontryagin duality: Co-equal status for all Fourier
transforms

There are several distinct but related notions of Fourier transforms. You
might have heard of them as continuous Fourier transforms, discrete
Fourier transforms, discrete-time Fourier transforms and so on.

These disparate notions are all unified under Pontryagin duality and
given co-equal status. If G is a locally compact Hausdorff group, the
Pontyagrin dual is the group Ĝ of continuous group homomorphisms from
G to the circle group T . That is, Ĝ : Hom(G ,T ). Then L2(G ) ∼= L2(Ĝ ),
where ∼= is a generalized Fourier transform.

In the context of quantum computing, the discrete Fourier transform is the
one that is usually most relevant and we will focus on that for now.
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The discrete Fourier transform transforms a sequence of N complex
numbers {xn} := x0, x1, . . . , xN−1 into another sequence of complex
numbers, {Xk} := X0,X1, . . . ,XN−1, which is defined by

Xk =
N−1∑
n=0

xn · e
−i2π
N

kn

The inverse Fourier transform is given by

xn =
1

N

N−1∑
k=0

Xk · e i
2π
N
kn
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A circular shift of the input xn corresponds to multiplying the output Xk

by a linear phase. Similarly, multiplying xn by a linear phase e
i2π(n−1)

n
m for

some integer m corresponds to a circular shift of the output Xk : Xk is
replaced by Xk−m where the subscript is interpreted modulo N (i.e.,
periodically).
If F({xn})k = Xk then

F({xn · e i2πnm/N}) = Xk−m

and
F({xn−m})k = Xk · e−

i2π
N

km

.
But note that this is exactly what our “quantum computing” equation
HXH = Z and HZH = X is saying!
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Shift and Clock matrices

This becomes even clearer if we use the Sylvester shift and clock matrices.

Σ1 =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0



Σ3 =


1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωd−1
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The Walsh-Hadamard Transform

The Sylvester matrix for the Walsh-Hadamard Transform is:

W =
1√
d


1 1 1 · · · 1

1 ωd−1 ω2(d−1) · · · ω(d−1)2

1 ωd−2 ω2(d−2) · · · ω(d−1)(d−2)

...
...

...
. . .

...
1 ω ω2 · · · ωd−1


Direct calculation yeilds:

Σ1 = WΣ3W

and
Σ3 = WΣ1W .

We specifically note that the Walsh-Hadamard transform can be regarded
as being built out of size-2 discrete Fourier transforms (DFTs), and is in
fact equivalent to a multidimensional DFT of size 2× 2× · · · × 2.
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Part IV: Revisiting Homological Codes
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Part IV: Revisiting Homological Codes

Let H denote the Hilbert space that is the state space of the toric lattice
with periodic boundary conditions. Then we can write VS ⊆ H as

VS = {|ψ⟩ ∈ H : Av |ψ⟩ = |ψ⟩,Bp|ψ⟩ = |ψ⟩}

where Av = ⊗v∈jσ
X
j and Bp = ⊗j∈∂Pσ

Z
j .
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Encoded Subspace Calculation in Original Space

The red square circulations represent Z-plaquettes in my image. The green
edges represent 1s in the computational basis and the non-green edges
represent |0⟩s in the computational basis.
In this scenario, the Z-plaquette operators affect the phases trivially
because each plaquette has a 0 mod 2 overlap with the |1⟩ edges. This
occurs precisely because such a state is a 1-cocycle, i.e., an element of
ker d1.
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So elements of H that satisfy the Bp|ψ⟩ = |ψ⟩ constraint are elements of
ker d1. But there’s also the vertex constraints that we need to take care of.

The vertex constraints basically set up an equivalence relation on the
states which can intuitively be interpreted as a permutation on the state
bitstrings. We note that upon application of a Bp an element of ker d1 is
still taken to an element of ker d1.
We also note that Bp is a 1-coboundary. So the legitimate states of our
encoded subspace VS is spanned by the 1-cocycles modulo the
1-coboundaries which correspond to the cohomology classes of
H1(T2,Z/2).
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Then we can take basis vectors for VS related to the cohomology classes
as follows:

|ψ00⟩ :=
∑
α

aα|α⟩

|ψ01⟩ :=
∑
β

bβ|β⟩

|ψ10⟩ :=
∑
γ

cγ |γ⟩

|ψ11⟩ :=
∑
δ

dδ|δ⟩

where α are the elements of the (0, 0) cohomology class, β are the
elements of the (0, 1) cohomology class, and so on.
The constraints arising from the Av ensure that all the aα are equal, bβ
are equal, cγ are equal and dδ are equal.
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Encoded Subspace Calculation in Conjugate Space

We noted in our earlier discussion that a bit flip error shows up as a phase
flip error in the conjugate {|+⟩, |−⟩} basis and the Hadamard is the basis
change matrix. If we apply H⊗n to the n physical qubits we transfer to the
dual vector space where the edges are now 1-cochains rather than 1-chains
(because the Hadamard transform is a Fourier transform).
The vertex operators in conjugate space are Z -type operators and the
plaquette operators are X -type operators.
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Due to the vertex checks in this conjugate space, the valid states should
be elements of ker d1. That is, at each vertex there must be an even
number of |1⟩s. But they’re equivalent up to boundaries (or products of
applications of the plaquette checks). So the encoded subspace
corresponds to the homology classes in H1(T2,Z/2) which has the same
dimension as the cohomology group H1(T2,Z/2).

Therefore, although there is no canonical isomorphism between the bases
of H1 and H1, there is a canonical isomorphism between ℓ2(H1(T2,Z/2))
and ℓ2(H

2(T2,Z/2)), which was essentially the point of Pontryagin
duality. ℓ2(H1(T2,Z/2)) and ℓ2(H1(T2,Z/2)) both represent the states of
the encoded qubits.
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Dual Cellulation and the Utility of Poincaré Duality

At times, it is convenient to represent the conjugate space on a Poincaré
dual cellulation, but that is by no means necessary!
It is unfortunate that texts on homological codes do not separate these
two notions of Fourier duality and Poincare duality. Yes, we can compose
them, but it’s not crucial to the subject.
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The above image shows a primal (solid) and its dual (dashed) square
lattice. The i-cells in the primal graph correspond to (2-i)-cells in the dual
graph.
Let H denote the Hilbert space which is the state space of the lattice.
Then we can write the logical codespace as VS ⊆ H as

VS = {|ψ⟩ ∈ H|Av |ψ⟩ = |ψ⟩,Bp|ψ⟩ = |ψ⟩}

for all v , p. Av and Bp are the vertex and plaquette operators as we had
discussed in our earlier slides.
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We will now relate the logical codespace to the (co)homology of the torus.
Let C0,C1 and C2 denote the free Z2-vector space over vertices (0-cells),
edges (1-cells) and plaquettes (2-cells) in the primal graph respectively.
Similarly, we denote C ′

0,C
′
1 and C ′

2 as the corresponding vector spaces for
vertices, edges, and plaquettes in the dual graph. We then have the
following chain complexes

· · · → 0 → C2
δ2→ C1

δ1→ C0 → 0

· · · → 0 → C ′
2

δ2→ C ′
1

δ1→ C ′
0 → 0

and we denote the homology groups for the primal graph and the dual
graph by H(T2) and H ′(T2). They’re both Z/2⊕ Z/2 because both the
primal and dual graphs come from a cellulation of a torus.
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Let us choose a basis for H by assigning a label tj = 0, 1 to every edge j of
the primal graph (which also assigns the same label to the corresponding
edge in the dual graph). Denote this basis by B. An element |ψ⟩ ∈ B then
corresponds to some element in C1 (and C ′

1).
So if the edge qubits in the primal lattice are in the computational basis
state (say) |000 · · · 1000 · · · ⟩ then that corresponds to a certain (not
necessarily connected) chain in the dual lattice, as we can see in the
picture above.
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Once again, we can take the basis vectors of VS related to the four
homology classes of the dual graph as follows:

|ψ00⟩ :=
∑
α

aα|α⟩

|ψ01⟩ :=
∑
β

bβ|β⟩

|ψ10⟩ :=
∑
γ

cγ |γ⟩

|ψ11⟩ :=
∑
ϵ

dϵ|ϵ⟩

where the α are the elements of C ′
1 that correspond to the homology class

(0, 0), the β correspond to the class (0, 1), and so on. The constraints
arising from the Av ensure that all the aα are equal, bβ are equal, cγ are
equal and dϵ are equal. This is basically the same calculation which we
already saw for cohomology H1.
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On a chain belonging to the (0, 0) homology class if we apply the X̄1

operator which corresponds to a horizontal essential cycle in the dual
graph then we would have converted the (0, 0) homology class to the
(1, 0) homology class! And that is exactly how the logical operator X̄1 is
supposed to act on the state |ψ00⟩ and take it to |ψ10⟩.
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Likewise, we can think about the action of the logical operators X̄1 and X̄2

on the rest of the logical basis states.

Two useful hints are:

1. Two essential cycles in the same direction (horizontal or vertical) are
basically a boundary and they together cancel out homologically (because
they together form a boundary).

2. The (1, 1) homology class a+ b can be thought of as noodles along the
diagonal of the rectangle whose opposite edges were identified to form a
torus.
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One remaining confusion one might have is how to think about the action
of the Z-type logical operators Z1 and Z2. A quick explanation is that the
homology class (0, 0) in the dual lattice looks like non-essential cycles and
in the primal lattice that will correspond to cycles that intersect with the
Z1 and Z2 operators an even number of times.

Whereas the homology class (1, 0) and (0, 1) in the dual lattice are
homologically equivalent to an application of the X1 or X2 operators on a
(0, 0) homology state in the dual lattice (think!). We can also think about
the (1, 1) homology class.
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Now even for a single qubit, we know that

Z |1⟩ = ZX |0⟩ = −XZ |0⟩ = −|1⟩.

From this simple logic, it follows that the Z1 operator flips the sign of the
|ψ10⟩ and |ψ11⟩ basis states due to an odd number of overlaps. Likewise,
Z1 flips the sign of the |ψ10⟩ and |ψ11⟩ logical basis states.

So everything works out as expected!
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The moral of our story was that any cellulation X of a D-dimensional
manifold gives a quantum CSS code. Using Z2-homology we can relate
the properties of the code, namely the number of physical qubits n, the
number of encoded qubits k, and the code distance d to properties of X .
The Poincaré dual cellulation was convenient but not crucial.

The End!
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